Электрические схемы компрессоров сплит систем

Схема кондиционера

Как и любое другое техническое устройство, кондиционер имеет принципиальную схему, на которой указаны все его составляющие, а также коммуникации — то есть соединения между ними.

Условно кондиционер можно разделить на две функциональные части:

  • холодильный контур
  • электрическая часть

Основную функцию — охлаждение, осуществляет холодильный контур, а вот всеми его компонентами управляет электрическая схема (электронная).

В данной статье мы рассмотрим схемы неинверторных кондиционеров.

Схема холодильного контура

Ниже размещена схема холодильного контура кондиционера.

Схема взята не из учебника, а из сервисной документации производителя, поэтому и обозначения приведены на английском языке.

Compressor — компрессор, «сердце кондиционера». Компрессор сжимает хладагент и прокачивает его по контуру.

Heat exchanger — теплообменник,

  • outdoor unit — внешнего блока, то есть конденсатор, охлаждает сжатый фреон ниже температуры конденсации
  • indoor unit — внутреннего блока — испаритель, в нём рабочее вещество испаряется, опуская температуру

Expansion valve — расширительный вентиль

По-другому ТРВ — терморегулирующий вентиль. Обеспечивает подачу необходимого количества хладагента.

В простых кондиционерах его роль выполняет капиллярная трубка, без всякой регулировки, в инверторных системах — электронный расширительный вентиль.

2-Way valve — двухходовой вентиль, то есть обычная задвижка, с двумя положениями — открыто и закрыто

3-Way valve — трёхходовой клапан, в кондиционере это сервисный порт, к которому подключается шланг манометрического манометра для измерения давления или заправки.

4-Way valve — четырёхходовой клапан, обеспечивает реверс хладагента для работы кондиционера в режиме обогрева

Strainer — фильтр, на данной схеме это фильтр-осушитель, так как установлен перед ТРВ (и после, так как система может работать в режиме реверса и хладагент меняет направление движения).

Его задача не допустить попадание влаги в тонкий канал ТРВ — так как влага его закупорит, не давая пройти хладагенту.

Muffler — глушитель

Стрелками указано направление движения фреона по контуру:

  • сплошной стрелкой — в режиме охлаждения
  • пунктирной стрелкой — в режиме нагрева

Также в более сложных и совершенных кондиционерах устанавливают:

  • датчики давления
  • отделители жидкого хладагента
  • линии перепуска
  • системы инжекции (впрыска) в компрессор
  • маслоотделители

Схема мульти сплит системы

Мульти сплит система — это кондиционер имеющий один внешний блок и несколько внутренних

В этом случае добавляются ещё несколько внутренних блоков, а также:

Distributor — распределитель, который расщепляет поток хладагента и направляет его в несколько внутренних блоков.

В схеме также присутствуют элементы, которые используются не только в мульти системах:

Receiver tank — ресивер.

Ресивер имеет несколько предназначений — защита от гидроудара компрессора, слив фреона при ремонте и т.д.

В данном случае это линейный ресивер, который не допускает попадание газообразного фреона в ТРВ

Электрическая схема кондиционера

Схема электрических соединений внешнего блока сплит системы:

Terminal — клеммная колодка для подключения межблочного кабеля для соединения с внутренним блоком.

N — электрическая нейтраль

2 — подача питания на компрессор с платы управления внутреннего блока

3 — подача питания на двигатель вентилятора для работы на 1-ой скорости

4 — подача питания на двигатель вентилятора для работы на 2-ой скорости

5 — подача питания на привод четырёхходового клапана для переключения в режим обогрева

Компрессор

C — common — общий вывод обмоток компрессора

R — running рабочая обмотка компрессора

S — starting фазосдвигающая обмотка двигателя компрессора, стартовая

Internal overload protector — внутренняя защита от перегрузки

Compressor Capacitior — электрический конденсатор, в данном случае рабочий (бывают ещё и пусковые, в настоящее время в кондиционерах не используются)

Fan motor — двигатель, мотор вентилятора

Thermal protector — защита от перегрева, обычно ставится непосредственно на обмотки двигателя и при превышении температуры разрывает цепь.

Fan motor Capacitior — рабочий конденсатор двигателя вентилятора

SV — solenoid valve — электромагнитный клапан, приводящий в действие механизм четырёхходового клапана.

Схема внутреннего блока кондиционера:

Клеммная колодка

На клеммной колодке кроме межблочных соединений находятся и зажимы для подключения питания (питание может подводиться и наоборот — к внешнему блоку)

L, N — электрическая линия и нейтраль однофазного питания

Filter Board — плата фильтра, уменьшает уровень помех в сети питания

Control Board — плата управления — управляет всеми устройствами, получает данные со всех датчиков, выполняет терморегуляцию, выводит информацию для пользователя на дисплей, выполняет самодиагностику.

Main relay — главное реле — силовое реле, подающее напряжение на компрессор.

Display board — модуль индикации, может представлять из себя линейку светодиодов, которые показывают наличие питания, выбранный режим, код ошибки или дисплей, на котором выводится ещё и температура.

Thermistor — термистор, терморезистор, датчик температуры

Room temp. — датчик температуры воздуха в комнате

Pipe temp. — датчик температуры трубки теплообменника, испарителя

Датчики температуры ещё могут находиться в:

    • пульте управления — для поддержания температуры в точке нахождения пульта (например ,режим «I Feel»).
    • на входе, выходе и в средней точки испарителя

Step motor — шаговый двигатель,

Применяется для открывания жалюзийной решётки, шторки, закрывающей вентилятор

За один шаг его вал отклоняется на небольшой угол, таким образом получается очень точно контролировать положение вала.

Drain pump motor — дренажный насос, встроенный только у кассетных кондиционеров

Float switch — поплавковый датчик уровня конденсата, только для кассетных кондиционеров

Где взять схему моего кондиционера?

Схемы кондиционера могут отличаться для каждой конкретной модели — где-то могут быть детали, которых нет в приведённых схемах (например датчики или защитные приборы), или наоборот, некоторых деталей не будет.

Для каждой модели кондиционера производитель выпускает сервисную документацию (Service Manual) для ремонтников, обслуживающего и инженерного персонала. В ней находятся не только схемы, но и коды ошибок, способы устранения поломок.

Итак, для нахождения схемы кондиционера необходимо:

  • выписать точную модель оборудования
  • найти сервис мануал в разделе «Техническая документация»
  • можно воспользоваться поиском по сайту или в интернете
  • получить информацию у производителя, дистрибьютора

Но даже если вы не нашли информацию по необходимому оборудованию, можно воспользоваться другой из этой серии, либо вообще от другого производителя, т ак как схемные решения очень схожи.

Также можно создать тему на профессиональном форуме, коллеги обязательно помогут Вам!

Электрические схемы на сплит систему и. котлов

Микросхема задающая алгоритм

Сегодня очень многих интересуют принципиальные электрические схемы на сплит системы, на котлы отопления различных марок и моделей, в этой статье мы не будем детально уточнять в каких приборах охлаждения применяется та или иная схема, но разобьём их по производителям микро-чипов

Как оказалось, что принципиальные схемы управления кондиционеров и котлов отопления практически идентичны, т.е. похожи как близнецы и братья.

Похожие эл. схемы

Основой так называемой похожести является микрочип, или микросхема задающая алгоритм тому или иному процессу управления сигналами как на котлах, так и на сплитах.

Читайте также  Шланг тормоз 53365 3506197 компрессора нагнет с трубкой 504в 3506197

Зачем это надо? Имея под рукой принципиальную схему с деталировкой и напряжениям по точкам контроля можно легко определить неисправный элемент платы управления не только сплит-системы, но и практически любого газового, дизельного или комбинированного котла системы отопления и горячего водоснабжения.

Плата управления котла, сплита

Скажу Вам по секрету, что если заказывать оригинальную плату управления котла, сплита отдельно, то получится весьма внушительная сумма исчисляемая в несколько тысяч рублей, но.

это не самое главное, деньги, цена вопроса замены платы сегодня мало кого пугают и останавливают, в конце концов можно и прибор полностью заменить.

Принципиальные электрические схемы управления сплит-систем и.

Но, фактор времени. как правило сплит системы ломаются летом в самую жару и зной, а котлы и другие приборы отопления частного дома, — ломаются соответственно зимою в процессе интенсивной эксплуатации, это называется Shutdown.

А, при наличии принципиальной электрической схемы можно в один день определиться с неисправностями того или иного алгоритма, отремонтировать плату управления и восстановить работоспособность прибора.

Это особенно актуально для котельного оборудования, что бы не заморозить систему отопления дома надо действовать быстро и оперативно.

Принципиальные электрические схемы управления сплит-системами, котла основанные на различных чипах

ПРИЛОЖЕНИЕ: Принципиальные схемы по производителям контроллера панели:

  1. FUJITSU Чипа. Принципиальная схема контроллера Группа E кондиционер воздуха серии с экраном (FUJITSU Chip)
  2. Motorola Чипа. Принципиальная схема контроллера панели серии EA Кондиционер (чип Motorola) Motorola кондиционера.
  3. Принципиальная схема контроллера Группы Серий HS Кондиционер (чип Motorola) с Renesas.
  4. Renesas. Принципиальная схема контроллера Группа E кондиционер воздуха серии с экрана дисплея (с чипом Renesas)

FUJITSU Chip Motorola Chip Motorola Air with Renesas Chip

Электрическая схема кондиционера

В современных помещениях уже длительное время с помощью кондиционеров создаются наиболее комфортные климатические условия. В жаркую погоду температура понижается до нужного значения, а в холодное время в помещении создается теплый микроклимат. Электрическая схема кондиционера применяется в различных типах и моделях. Они устанавливаются на стенах, на полу и под потолком. Благодаря современному дизайну, кондиционеры органично вписываются в интерьер любого помещения.

  1. Основные типы кондиционеров
  2. Общая схема кондиционера
  3. Электрооборудование кондиционера
  4. Как работает кондиционер

Основные типы кондиционеров

Разнообразие конструкций устройств кондиционирования воздуха позволяет применять их в самых разных местах. Например, модели мобильных кондиционеров не требуют монтажных работ. Из помещения на улицу выводится специальный блок или шланг для отвода теплого воздуха.

Очень простой монтаж и дальнейшее обслуживание у моноблочных устройств. В магистралях фреона нет никаких разъемов, поэтому его утечка полностью исключается. Такие кондиционеры отличаются низким шумом, обладают высоким КПД, однако, имеют довольно высокую стоимость.


Монтаж оконных кондиционеров осуществляется в проемах стен или окнах. При работе они производят много шума, но, благодаря низкой цене, удобству монтажа и обслуживания, пользуются широкой популярностью у потребителей.

Одной из разновидностей кондиционеров являются сплит-системы. Их конструкция включает в себя наружный и внутренний блок. Соединение обеих частей производится с помощью медных труб. По этим трубам происходит циркуляция хладона. Наружный блок состоит из компрессора, конденсатора, вентилятора и дросселя. Во внутреннем блоке установлен испаритель и вентилятор. Выпускается множество модификаций сплит-систем, что позволяет их устанавливать во многих местах.

Общая схема кондиционера

В каждом конденсаторе присутствуют основные элементы, выполняющие определенные функции. Внутри внешнего блока расположен конденсатор, превращающий газообразный хладагент в жидкую форму. Другим важным элементом является дроссель или терморегулирующий вентиль. С его помощью происходит снижение давления хладагента при подходе к испарителю. Сам испаритель изготовлен в виде радиатора, установленного во внутреннем блоке.

Во время снижения давления именно здесь осуществляется переход хладагента из жидкой в газообразную форму. С помощью компрессора хладагент сжимается и циркулирует по кругу. Вентиляторы создают потоки воздуха, необходимые для обдува испарителя и конденсатора. Соединение всех основных элементов выполняется с помощью медных трубок. В результате, образуется замкнутый контур, по которому происходит циркуляция хладагента.

Электрооборудование кондиционера

Все основные элементы систем кондиционирования не могут работать сами по себе. Всю работу обеспечивает электрическая схема кондиционера. Общая схема включает в себя несколько основных частей. Подключение межблочного кабеля к внутреннему блоку осуществляется при помощи клеммной колодки Terminal. В самой колодке имеется несколько клемм. N является электрической нейтралью, №2 подает питание с платы управления на компрессор, №3 обеспечивает работу вентилятора на первой скорости, а №4 – на второй скорости. Пятая клемма подает питание к приводу 4-х ходового клапана при переходе в режим обогрева.

В самом компрессоре существует три вывода: C, R и S, обозначающие соответственно, общий вывод обмоток, рабочую обмотку и стартовую обмотку двигателя компрессора для сдвига фаз. Кроме того,в схему включена защита от перегрузок и перегрева, а также клеммы для подключения вентилятора, конденсатора, электромагнитного клапана и других элементов.

Работа герметичных компрессоров

С хемы электрического включения герметичных компрессоров определяются типом электродвигателя, примененного для привода компрессора, а также параметрами питающей сети. Для привода компрессоров, предназначенных для подключения к однофазной сети, используются асинхронные конденсаторные двигатели. Асинхронный конденсаторный двигатель имеет на статоре две обмотки. Одну из обмоток, пусковую, включают непосредственно в однофазную сеть, а другую, рабочую, включают через рабочий конденсатор.


Схема включения конденсаторного двигателя с рабочей емкостью наиболее распространена в бытовых кондиционерах (см. рис.)
1 — электродвигатель; 2 — внутренняя электрическая защита (тепловая, токовая); 3,4 — обмотки пусковая и рабочая соответственно; Ср — конденсатор рабочий; R, С, S — выводы обмоток; L — фаза; N — рабочий нуль.

Рабочий конденсатор создает фазовый сдвиг между токами в пусковой и рабочей обмотках статора и остается включенным на протяжении всего периода работы двигателя.

Необходимо помнить, что измерять сопротивление обмоток электродвигателя таких компрессоров следует после остывания компрессора. Иначе можно сделать неверный вывод о наличии обрыва в обмотках.


Для повышения пускового момента параллельно рабочему конденсатору включают конденсатор, называемый пусковым (см. рис.). По окончании пуска этот конденсатор отключается.
На рисунке: 1 — компрессор; 2 — реле пусковое; 3 — реле тепловой (токовой) защиты; 4, 5 — обмотки пусковая и рабочая соответствен.но; Сп — конденсатор пусковой; Rш — резистор шунтирующий.

Г ерметичные компрессоры для трехфазной сети используют в качестве привода трехфазные асинхронные двигатели с короткозамкнутой обмоткой ротора. Для запуска таких компрессоров применяют метод непосредственного включения электродвигателей в сеть, который благодаря своей простоте получил наибольшее распространение для электродвигателей компрессоров мощностью до 7,5 кВт. Однако он имеет один существенный недостаток: в момент подключения двигателя к сети в обмотке статора возникает большая пусковая сила тока, в 5. 7 раз превышающая значение номинальной силы тока двигателя. Значительный бросок силы тока в питающей сети может вызвать заметное падение напряжения.

В цепи питания трехфазного двигателя, являющегося приводом ротационного, спирального компрессоров, всегда устанавливают реле контроля чередования фаз для предотвращения обратного вращения.

Читайте также  Холодильник компрессор не запускается после отключения

Для предотвращения автоматического повторного включения такие защиты, как токовая защита, внутренняя тепловая защита, датчик высокого давления и т. п., включаются по схеме с самоудержанием.

Электрические цепи подразделяются на рабочие цепи и цепи защиты. Для обеспечения функционирования рабочих цепей предназначены: пусковое реле, пусковой конденсатор, рабочий конденсатор, шунтирующий резистор.

Пусковое реле служит для подключения пускового конденсатора параллельно рабочему на время запуска электродвигателя компрессора. Обмотка реле включена параллельно вспомогательной обмотке электродвигателя, контакты реле нормально замкнуты. При достижении 75% частоты вращения электродвигателя реле срабатывает и отключает пусковой конденсатор.

В бытовых кондиционерах используется два типа пускового реле: тепловое и реле напряжения. Тепловое реле реагирует на теплоту, выделяемую при прохождении тока через провод. Эти реле снабжены двумя парами контактов для включения пусковой и рабочей обмоток электродвигателя соответственно.

Для проверки работоспособности реле его отключают от питания и отсоединяют фазный провод на клемме на выходе реле и соединяют его с клеммой на входе. С помощью токовых клещей замеряют силу тока в нулевом проводе, подключенном к компрессору. Для этого включают компрессор и немедленно отсоединяют провод на реле от входной клеммы. Если компрессор продолжает работать, а сила тока приближается к номинальной, то, значит, реле неисправно и его заменяют. Если компрессор работает при номинальной силе тока, но останавливается в течение 1. 2 мин, то реле неисправно и его заменяют.

Пусковое реле напряжения электромагнитного типа содержит катушку из проволоки, намотанной на сердечник. Реле имеет нормально замкнутые контакты, которые размыкаются при втягивании сердечника в катушку. Реле может заклинить при закрытом или открытом положении контактов. Пусковое реле, заклинившее в закрытом положении, осуществляет пуск электродвигателя, но защитное реле при этом часто включает и выключает электродвигатель.

Пусковой конденсатор устанавливается в пусковой цепи и подключается параллельно рабочему конденсатору только в момент пуска. Условием работоспособности конденсатора служит его емкость. Если емкость меньше номинальной на 20 %, то конденсатор следует заменить.

Рабочий конденсатор включен последовательно с рабочей обмоткой электродвигателя компрессора. Он постоянно включен в рабочую цепь. Рабочий конденсатор повышает КПД компрессора и создает достаточный крутящий момент для запуска электродвигателя с постоянно расщепленной фазой. Если емкость рабочего конденсатора имеет отклонение от номинала более чем на ±10 %, то его заменяют.

Шунтирующий резистор включается параллельно пусковому конденсатору. После запуска компрессора пусковой конденсатор отключается и остается в заряженном состоянии. В момент следующего включения пусковой конденсатор практически мгновенно разряжается через контакты пускового реле и рабочий конденсатор. Наибольшим сопротивлением в этой цепи обладают контакты пускового реле. Выделяемое на них тепло может стать достаточным для сварки контактов. При сварке контактов пускового реле отключение пускового конденсатора станет невозможным, что приведет к выходу его из строя и к пробою изоляции обмотки электродвигателя. Для предотвращения столь серьезных последствий предназначен шунтирующий резистор, на который разряжается пусковой конденсатор после его отключения.

З ащиту компрессоров кондиционеров обеспечивают цепи защиты, которые содержат следующие элементы: реле тепловое (токовое), реле перегрузки, реле внутренней тепловой защиты в управляющей цепи, реле тепловой защиты в цепи питания, реле контроля чередования фаз.

Защита устанавливается на верхнюю часть герметичного корпуса компрессора (имеет внешний вид «таблетки») и отключает компрессор при перегреве или при превышении допустимой силы тока. Выпускаются несколько типов подобных элементов. Одни имеют в своем составе нагреватель и биметаллическую пластину, другие содержат только биметаллическую пластину, которая изгибается при нагревании и размыкает контакты в электрической цепи компрессора. Нагрев происходит от корпуса компрессора или вследствие значительной силы тока, протекающего через пластину (или нагреватель). После остывания биметаллическая защита возвращается в исходное положение, замыкая контакты. Реле включается в цепь асинхронного конденсаторного двигателя таким образом, что при срабатывании отключает питание от вывода (клеммы) С, являющейся точкой соединения рабочей и пусковой обмоток.

Т оковую защиту обеспечивает реле перегрузки, предназначенное для аварийного отключения компрессора в случае превышения допустимой силы тока в цепи его питания. Причинами превышения силы тока могут быть заклинивание компрессора, замыкание обмоток, низкое питающее напряжение. Защитные реле перегрузки, монтируемые снаружи компрессора, выпускают трех модификаций: с двумя клеммами, с тремя клеммами, с четырьмя клеммами. Для проверки реле с двумя клеммами токовыми клещами определяют пусковую и рабочую силу тока электродвигателя компрессора. Амперметр должен показать мгновенный скачок силы тока, превышающий в 4. 6 раз номинальный ток электродвигателя компрессора, который затем снижается до заданной величины. Если ток не уменьшается, а отключение электродвигателя происходит защитным реле, то оно исправно. На рис.: 1 — компрессор; 2 — реле тепловой (токовой) защиты; 3,4 — обмотки пусковая и рабочая соответственно.

Защитные реле с тремя клеммами применяют в электрической схеме компрессора, когда желательна защита не только рабочей, но и пусковой обмоток.

Защитные реле с четырьмя клеммами используют для защиты мощных компрессоров. Эти реле могут быть с биметаллическим элементом или со спиралью. Они имеют два соединения с цепью управления. Если величина силы тока, протекающего через электродвигатель компрессора, выше номинальной, то биметаллический элемент или спираль нагреется, цепь управления размыкается, компрессор останавливается.

Поскольку при снижении тока реле автоматически возвращается в исходное состояние, то этот элемент включается в цепь обмотки пускателя по схеме с самоудержанием.

Р еле внутренней тепловой защиты в управляющей цепи устанавливается непосредственно на выводы обмотки трехфазного электродвигателя компрессора (см. рис.). В качестве термочувствительного элемента используется биметаллическая пластина. Как правило, внутренняя тепловая защита используется вместе с токовой защитой, которая практически мгновенно реагирует на значительные скачки тока. Внутренняя тепловая защита обладает большей инерционностью и предназначена для предотвращения постепенного перегрева обмоток электродвигателя при неисправностях компрессора или элементов гидравлического контура. На рис.: 1 — электродвигатель компрессора; 2 — реле внутренней тепловой защиты; W, U, V — выводы обмоток.

Ротационные, спиральные компрессоры предполагают вращение вала приводного электродвигателя только в одном направлении. Для исключения ошибочного подключения компрессора к трехфазной сети и, как следствие, обратного вращения применяется реле контроля чередования фаз.

Реле контроля чередования фаз имеют еще одну функцию — это контроль значений всех фазных напряжений. Допускается одновременное отклонение фазных напряжений не более чем на 10%, а разница в значениях напряжений фаз (перекос) должна составлять менее 5 %. Несбалансированности напряжений следует уделять особое внимание, поскольку дисбаланс, например, в 5 % увеличивает тепловыделение на обмотках электродвигателя на 50 %.

Ремонт сплит-систем своими руками

Сегодня поговорим о HVAC (Heating, ventilation and air conditioning). Это зарубежная терминология, подразумевающая кондиционирование, вентилирование и обогрев одновременно, однако на практике относится к тому, что называется кондиционером в России. Вид необычный, простота восхищает. Ремонт сплит-систем своими руками делать проще, когда внутреннее устройство наглядное, и HVAC здесь признанные лидеры. Рассмотрим устройство внешнего блока, принцип действия, уход и ремонт. Собранные воедино, сведения помогут переосмыслить российские реалии. На наш взгляд ремонт сплит-систем собственноручно облегчается, если устройство прибора простое.

Читайте также  Электрический автомобильный компрессор качок

Внешний блок сплит-системы HVAC

Рассмотрим устройство HVAC частично: что касается кондиционирования.

Электрическая схема внешнего блока сплит-системы HVAC

В зарубежных кинофильмах показывают на крышах короба с сетчатым верхом, внутри вращается огромный вытяжной пропеллер. Подобным образом функционирует принудительная вентиляция помещений. В стране общеприняты системы с естественным побуждением. Не удивительно, что внешние блоки кондиционеров стали выполнять по образу упомянутых коробов. Ставятся на крыше либо на отмостке фундамента. Бросается в глаза: питание у внешнего блока местное, здесь же в стену встроен силовой щиток, закрытый герметичной крышкой, откуда тянутся провода, заземление также местное.

Известно, что внешний и внутренний блоки кондиционера соединяются двумя фреоновыми линиями, дренажной трубкой и проводами питания. В описанном случае по-другому. Где находится дренаж – неведомо, лучше заводить не на голову прохожих, а в канализацию (как принято за морем). Что касается электрики, сюда приходит лишь сигнальный кабель управления реле. Это удобно при прокладке системы. В остальном отличий мало: рядом идут утепленные толстая и тонкая трубки для фреона. Кабель подогрева отсутствует по понятным причинам. Сказанное относится к дренажной системе. Зимой вода становится льдом, создает пробку в трубке, нарушает нормальную работу оснастки дренажа.

По указанным обстоятельствам и прокладывается кабель. Обратите внимание, дренажный тракт изолируется от фреонового. Сплит-системы, известные в России, широко распространены в Азии, однако без учета отсутствия морозов. Становится понятно, почему для работы зимой и на обогрев требуется ряд ухищрений, отсутствующих в стандартных сплит-системах:

  1. электронная плата для регулирования оборотов компрессора;
  2. самонагревающийся кабель для дренажной ветки;
  3. спираль обогрева компрессора.

Каждый автомобилист знает, что зимой используется другое масло. В кондиционер по понятной причине нельзя залить новую смазку, иначе придется фреон перезаправить. В общем, кондиционеры (сплит-системы), на наш взгляд, выглядят сегодня громоздко.

Замечательна простота внешнего блока HVAC:

  • Близкий по форме к кубу корпус с одного угла скошен, добавлены два элемента:
  1. Конденсатор для сглаживания пульсаций вентилятора.
  2. Реле для включения агрегата в нужное время.
  • В корпусе через отверстия три проводника проходят внутрь на асинхронный двигатель. Фаза проходит внутрь через реле, оставшиеся жилы – через конденсатор – каждая на собственную обмотку. Катушки двигателя неравноценные. Первая сопротивлением 30 Ом, вторая – втрое ниже.
  • Конденсатор с тремя контактами, два включаются между двумя обмотками.
  • Двигатель запускается через реле, воспринимающее сигнал переменного тока 26 В.
  • С реле вдобавок запускается мотор компрессора.

Снаружи выглядит запутанно, но на деле сложного нет! Двигатели компрессора и вентилятора схожи, каждый на статоре несет 4 обмотки, у ротора два полюса. Напряжение двух обмоток приходит из сети, для двух сдвигается конденсатором на 90 градусов.

Внутри образуется вращающееся поле. Представьте как асинхронный двигатель с двумя обмотками. Часто одна катушка пусковая, а здесь работает постоянно. Контактор управляется сигналом термостата, стоящего в доме. Электромагнитное реле срабатывает от сигнала 26 В переменного тока. Разрыв идет по первому проводу, второй свободно проходит внутрь.

В довершение рассказа об электрической схеме заметим, что локальное питание приходит через защитное устройство:

  1. дифференциальный автомат;
  2. щиток с предохранителями.

Перед началом ремонта цепь обрывается. Снимите с щитка крышку и обесточьте внешний блок сплит-системы HVAC.

Расположение элементов внутри внешнего блока сплит-системы HVAC

Крышка и стенки «куба» снабжены большим числом щелей и отверстий. Это обеспечит свободный приток и отток воздуха. Дождь свободно капает внутрь, чистка радиатора производится напором из шланга. Вентилятор крепится на крышку четырьмя мощными болтами. Без надобности снимать не стоит, просто откручивайте болты по периметру верхней грани и снимайте одновременно. Предварительно освободите три провода, о которых говорилось выше:

  • черный идет к реле;
  • пурпурный и коричневый идут к конденсатору.

Как узнать конденсатор внешнего блока сплит-системы HVAC. Это здоровенный цилиндр, невозможно не заметить. Провода крепятся на пластиковую ленту, требуется разрезать, а после ремонта заменить новой. Крышка с вентилятором и косой проводов откладывается в сторону.

Внутри видим на дне компрессор, в точности как у холодильника. Толстая трубка проводит фреон в газовой фазе, тонкая – в жидкой. За компрессором стоит конденсор. Змеевик охватывает две стенки куба полностью, частично две другие. Терпит разрыв лишь в месте скоса, где расположены снаружи конденсатор и реле с проводами. Трубка змеевика медная, радиатор из стали либо алюминиевый быстро сгниет под дождем.

Добавим, что после конденсора стоит фильтр-осушитель, не дающий образоваться ледяной пробке на капиллярной трубке, уходящей внутри дома. Гениально и просто. Периодически фильтр-осушитель подлежит замене.

Функционирование внешнего блока сплит-системы HVAC

Вентилятор, установленный горизонтально на крышке, работает на вытяжку. Воздух заходит с улицы через конденсор, омывает компрессор и выходит вверх наружу. Компрессор нагнетает фреон в змеевик, тот сжимается и переходит в иное агрегатное состояние. Жидкость легко отдает температуру через алюминиевый радиатор и устремляется через фильтр-осушитель внутрь здания.

Рассмотрим преимущества и недостатки. Конструкция идеальна для теплого климата, однако сугроб или наледь на решетках корпуса нарушают нормальную работу. Подобные устройства в нашем климате необходимо ставить на чердаке (с учетом наличия утепления и морозостойкости строительных материалов). В последнем случае даже зимой некоторое время смогут работать на обогрев. В традиционных сплит-системах четырехходовой клапан, переключающий режим, находится во внешнем блоке, однако допустимо расположить в удобном месте. Описанный агрегат не боится воды – это большой плюс.

Чистка внешнего блока сплит-системы HVAC

Загрязняется конденсор, щели узкие, прямо-таки предрасположены задержать пыль. Так чистят внешний блок сплит-системы HVAC:

  1. Снимаются крышка с вентилятором.
  2. Оттаскиваются в сторону боковые стенки.
  3. Пылесосом снимается пыль снаружи и изнутри, со дна, стенок.
  4. Шлангом изнутри щедро поливается конденсор.
  5. Выступившая снаружи грязь убирается пылесосом с аквафильтром.

Это простая и надежная система. Трубки конденсора специально сделаны из меди, чтобы не стали жертвой электрохимической коррозии. Компрессор упакован в герметичный кожух, покрашен черной краской, чтобы лучше отдавал тепло. Обдувом деталей занят общий вентилятор на крышке. Система ремонтопригодна, обнаружить неисправность сможет даже школьник: два двигателя с тремя контактами, реле и конденсатор. Заправка происходит здесь же через сервисные клапаны блока. Используется коллектор. Первым концом подключается на сторону высокого давления, вторым – на сторону низкого. В середине баллон с фреоном. Для контроля количества заправляемого в сплит-систему HVAC хладагента используются общедоступные температурные диаграммы.

Главные виды неисправностей понятны, следовательно, починить сплит-систему самостоятельно труда не составит. Автор ролика на Ютуб утверждал, что не стоит чистить радиатор специальной щеткой, иначе погнется и станет работать хуже. Пусть лучше пара пятен останется. Поломки в сплит-системе HVAC устранять просто, благодаря продуманной конструкции.