Электрические моторы для электромобилей

Электродвигатели для электромобилей

Электродвигатели для электромобилей

Электромобиль — вид транспорта, приводимый в движение с помощью электродвигателя. Источником питания электромобиля являются топливные элементы или аккумулятор.

Принцип работы электромобиля:

1 этап — электроэнергия приходит на электромагнитный разъём

2 этап — энергия под управлением водителя поступает к электродвигателю

3 этап – электродвигатель вращает колеса.

экологичность (нет выхлопов угарного газа)

просты в техобслуживании и эксплуатации

электроэнергия дешевле топлива

маневренность и компактность

Использование электромобилей повсеместно носит перспективный характер. На данный момент наиболее распространены электромобили в Норвегии, Китае и др.

Для продолжительной работы электромобиля необходим надежный электродвигатель. Европейская компания Letrika признана многими производителями техники, которые широко используют ее электродвигатели на своем производстве.

Особенности электродвигателей от Letrika

обширный ассортимент (классические версии или выполняемые под заказ, например, конструктивное исполнение по техническим условиям UL (США))

повышенная устойчивость к внешним агрессивным факторам (температуре, вибрации, пыли, влаге, грязи и т. п.)

экологически чистое производство без использования асбеста, свинца, кадмия, бериллия и аммиака

высокая удельная мощность на выходе (номинальная мощность от 200 Вт до 28 кВт)

компактность конструкции за счет постоянного совершенствования и внедрения инновационных разработок

соответствие установленным стандартам и директивам

С электродвигателями «Летрика» электромобили смогут преодолевать значительные расстояния, не требуя частой зарядки.

Как заказать электродвигатель

Заказать электродвигатель Letrika для электромобилей можно по телефонному номеру 8 (800) 555-30-58 (бесплатно по РФ), где менеджер сможет предоставить полную информацию по предлагаемым версиям и подобрать лучший вариант. Также можно самостоятельно заказать продукцию на сайте, используя подбор электродвигателей по категориям или производителям. Менеджер перезвонит по указанным вами в форме заказа контактам для уточнения необходимых данных.

Обратите внимание! На оптовые партии электродвигателей у нас действуют скидки!

Двигатель электрический для электромобиля, прошлое, настоящее и будущее

Где применяется электрический автомобильный двигатель

Электродвигатель для автомобиля, в качестве тягового устройства применялся на автомобилях (вернее на их прототипах), еще раньше, чем двигатель внутреннего сгорания. Однако на сегодняшний день автомобильные электрические машины (именно так они правильно называются), применяются на электромобилях, работающих исключительно на аккумуляторах или других накопителях электрической энергии, а также на гибридных автомобилях.

Гибридные автомобили называются так, потому, что в них есть и двигатель внутреннего сгорания (ДВС), и аккумуляторная батарея.

История создания

Первая, можно сказать лабораторная, модель-прототип электромобиля была создана почти 200 лет назад. Известно, что в 1828 году венгерский изобретатель Джедлик продемонстрировал тележку, которая двигалась за счет электрической энергии. Но этот образец только показал принцип электрической тяги. Ведь настоящий электродвигатель постоянного тока, способный работать достаточно долго, был изобретен в 1833 году физиком из Великобритании Уильямом Стёрдженом. В 1835 году в Голландии Кристофер Беккер и Стратин Гронинген построили первый электромобиль. Конечно, он был несовершенен и в серийное производство не пошел.

Первый патент на электрический двигатель был получен в 1837 году Томасом Дэвенпортом, именно с этого времени можно сказать, что началось строительство электромобилей. Проблема электромобилей того времени была в очень небольшом заряде тогдашних аккумуляторов. Эту проблему пытались решить американец Томас Давенпорт и голландец Роберт Андерсон, которые создали автомобиль, двигающийся за счет электричества от одноразовых гальванических элементов в 1842 году.

Больших успехов в использовании электрической энергии для тяги достигли в 19-том веке железнодорожники. Уже в 1847 году в Питсбурге (США) работал локомотив (можно назвать его первым электровозом), который получал электричество по рельсам. Аккумуляторы были очень ненадежные и с очень небольшим ресурсом, да и энергии они запасали мало. И только улучшение рабочих характеристик аккумуляторных батарей решило проблему использования электромобилей. Нужно отметить, что первый рекорд скорости превышающей 100 км/час был зафиксирован именно электромобилем.

Так в 1899 году бельгиец Камиль Женатци на электромобиле «La Jamais Contente» разогнался до 105,882 км/ч. Как видно на рисунке (слева) этот электромобиль на резиновом ходу (на пневматических шинах), это тоже было новшеством на тот момент.

Немногим раньше в Лондоне было запущено движение электрических омнибусов (тогдашних автобусов) благодаря Ральфу Уорду. В это же время в Нью-Йорке начали работать такси на электротяге, стали выпускаться электровелосипеды и многие другие подвижные единицы на электричестве. В России они (электромобили, точнее омнибусы) появились в 1901 году (фото справа) разработки инженера Романова. Уже в 1902 году заводом «Дукс» в Москве выпускался электромобиль для частного использования (фото слева).

Напомним, что только в 1878 году Николаусом Отто был запущен в серию четырехтактный двигатель внутреннего сгорания, который можно было устанавливать на автомобиль. Он с некоторыми доработками служит «верой и правдой» автомобилистам и по сей день.

Да, двигатель Отто и резкое падение цен на нефть, из которой получают бензин, вытеснило электромобили почти на 100 лет с рынка, но они вновь завоевывают себе «место под солнцем», тесня классические ДВС. Все это благодаря тому, что электромобили практически бесшумны, экологически безвредны и экономически выгодны в эксплуатации. Нужно напомнить, что КПД электродвигателя высокий и составляет (85…95 %), да и электричество дешевеет. Если его (электричество) получать при помощи солнечных батарей или ветрогенераторов, то эксплуатация электромобиля получается почти бесплатной.

На сегодняшний день доля электромобилей среди всего автопарка составляет около 1%, но это пока. За последние 2 года количество продаж электрокаров увеличилось на 45%. Осталось только подождать, когда бензиновые и дизельные автомобили потихоньку сойдут с рынка.

Принцип работы электромобиля

Классическая схема электромобиля представлена на рисунке справа. Аккумуляторы расположенные здесь вдоль кузова отдают свою энергию через устройство управления (УУ) электродвигателю (ЭД), а он вращает колеса. Но эта компоновка далека от совершенства. Дело в том, что электропривод имеет очень важное преимущество перед любыми другими типами приводов – рекуперация. Рекуперация, это преобразование энергии движения в электрическую. Все мы с вами знаем, что энергия никуда не исчезает, она может только преобразовываться из одного вида в другой. Так вот, энергия движения (кинетическая энергия) при торможении автомобиля преобразуется в тепловую. Мы с вами просто нагреваем тормозные колодки, и это тепло отдаем атмосфере. То есть, по сути дела выбрасываем эту энергию. В электромобилях и в гибридах мы можем большую часть кинетики преобразовать в электричество и опять накопить его в аккумуляторе.

Гибридные автомобили всегда имеют кроме аккумулятора и двигатель внутреннего сгорания. Зачем? Для того чтобы удлинить расстояние езды на электромобиле. Дело в том, что даже современные аккумуляторы могут накопить энергии на 100, ну максимум на 200 километров пробега. Согласитесь, что это совсем немного. При использовании ДВС, в качестве дополнительного источника энергии можно удлинить путь до 800, а иногда и до 1000 километров без подзарядки аккумулятора и без дозаправки бензином или дизельным топливом.

Как правило, на авто такого типа (гибридных автомобилях) нет прямого воздействия двигателя на ведущие колеса. ДВС вращает генератор, который вырабатывает электрическую энергию, и уже эта энергия подается на электродвигатели либо на накопители энергии, если автомобиль едет по инерции или стоит (на светофоре, например). Накопителями энергии могут быть не только аккумуляторы, в последнее время все большей популярностью пользуются суперконденсаторы.

Читайте также  Как получить мотор в рафт

Двигатель на гибридных автомобилях может быть подключен к генератору, который вырабатывает электричество. Электричество это можно использовать для разгона (его обычно не хватает, аккумулятор плохо отдает электроэнергию на старте), или для зарядки аккумулятора, если авто на выбеге или стоянке. Крайне редко ДВС не подключен к генератору. При такой схеме ДВС помогает электродвигателю разгонять автомобиль.Где же экономия? Все дело в том, что при любой схеме подключения ДВС и электродвигателя, двигатель внутреннего сгорания всегда работает в номинальном режиме. В котором достигается максимальная экономия. КПД у ДВС всегда указывается для номинального режима и он колеблется от 36 до 42. Для малых оборотов этот КПД не превышает 7…10%.

Существует и более сложные системы. Вот, например, как взаимодействуют детали в современном гибридном автомобиле «Тойота Приус». Здесь ДВС может работать на генератор, а может и помогать вращать ведущие колеса через планетарный механизм. При торможении, мотор/генератор (MG2) преобразует кинетическую энергию в электрическую, заряжая аккумулятор. В результате чего достигается неплохая экономия. Да это сложно, но это того стоит. Расход у Тойоты-Приус около 3-х литров бензина на 100 километров.

Устройство тягового электродвигателя автомобиля

Устройство электродвигателя автомобиля зависит, от многих факторов. Электродвигатели для электромобилей могут быть как постоянного, так и переменного тока. В последнее время на машину такого типа ставят только двигатель переменного тока (синхронный или асинхронный). Первые электромоторы для автомобилей были, конечно, постоянного тока. Это и логично, потому как аккумулятор выдает постоянный ток, и двигатель электрический также постоянного тока. Их применяют и сейчас, но уже гораздо реже. Однако, все не так просто, как кажется на первый взгляд. Электродвигатели переменного тока гораздо экономичнее и надежнее. Выглядеть они могут точно так же как и электродвигатели постоянного тока. Разные типы электродвигателей имеют различную маркировку. AC – говорит о том, что этот двигатель переменного тока, DC – постоянного.

Принцип работы любого электродвигателя состоит во взаимодействии магнитных полей. Еще Фарадей на заре электричества заметил, что если проводник, по которому течет ток, поместить в постоянное магнитное поле, то этот проводник стремится вырваться из этого поля отклоняясь в ту или иную сторону в зависимости от направления движения тока. Если этих проводников много, и магнитное поле сильное, то и работа такого двигателя постоянного тока будет соответствующей.

В каждом электродвигателе есть ротор (его иногда называют якорь) и статор (его еще называют индуктором). Ротором является вращающееся часть, статором – не вращающееся (стационарная). И ротор и статор имеют обмотки состоящие из отдельных проводников. Для подачи электрического тока на вращающуюся часть двигателя существует коллектор (набор медных пластин собранных в цилиндр). От статора на коллектор ток передается при помощи специальных щеток. Взаимодействие магнитных полей заставляет ротор совершать вращение.

Электродвигатели переменного тока работают несколько по-другому. Статор создает магнитное поле, которое само вращается. Оно (поле) может увлекать за собой стальные предметы, то есть заставлять вращаться ротор. По этой причине на роторе обмотка не нужна. Но в этом случае скорость вращения ротора будет отставать от скорости вращения магнитного поля статора. Такие электродвигатели нарываются асинхронными.

Для того, чтобы точно знать с какой частотой вращается ротор и регулировать эту частоту, необходимо на роторе разместить электрическую обмотку. Такие электродвигатели называются синхронными. Но вновь появляется слабое звено электродвигателя – коллектор. Щетки изнашиваются и их нужно менять. Асинхронные двигатели в обслуживании не нуждаются.

На рисунке представлено два вида синхронных двигателей (с явными и неявными полюсами). Повторимся, что асинхронный двигатель отличается лишь тем, что на якоре нет обмотки.

При работе каждый электродвигатель нагревается. По этой причине тема охлаждения электрических машин очень важна. Система охлаждения может быть автономная и принудительная. На электродвигателях большегрузных автомобилей, например БелАЗ, охлаждение принудительное (воздух для охлаждения подается специальным вентилятором). У машин малого класса и легковых, на самом двигателе есть крыльчатка, которая продувает воздух через двигатель, тем самым охлаждая его.

Характеристики электродвигателей автомобильных

Характеристика электродвигателя, это соотношение его параметров к его цене. Лучше всего это представить в табличной форме. В таблице представлены популярные электродвигатели как постоянного DC, так и переменного AC тока. Напряжение у некоторых двигателей имеет несколько значений, это значит, что они способны работать на всех указанных напряжениях. Мощность N указана номинальная. Вращающий момент M, тоже при номинальном режиме работы. Частота вращения указана как максимально допустимая.

Характеристики электрического двигателя автомобиля невозможно сравнивать спонтанно. Для каждого конкретного случая, для определенного автомобиля, может быть разработан свой, оригинальный электродвигатель. Но электродвигатель переменного тока, а он здесь представлен один, явно отличается в лучшую сторону, от электродвигателей постоянного тока той же мощности, хотя бы по соотношению цены и вырабатываемой мощности (AC – 10.7 $/кВт, DC – 450 $/кВт).

Перспективы развития

Внедрение синхронных и асинхронных двигателей на автомобилях тормозилось медленным развитием электроники способной контролировать процессы в этих самых двигателя. Теперь эти барьеры снимаются, электроника становится надежной и относительно дешевой. По этой причине в скором времени электродвигатели переменного тока на электромобилях скорее всего будут внедряться практически повсеместно.

Изобретение новых конструкционных материалов позволяет повышать надежность и долговечность электродвигателей.

Что касается электромобилей в целом, то за ними большое будущее.

Bosch e-axle
Силовая установка для электромобилей

Разработчики: Bosch
Дата премьеры системы: 2017
Отрасли: Транспорт

Известно, что более мощный аккумулятор позволит увеличить запас хода электромобилей. Но сможет ли новый силовой агрегат продемонстрировать сопоставимый эффект? В случае применения системы осевого электрического привода e-axle от Bosch ответ – сможет. Особенностью системы Bosch является то, что она объединяет три компонента силовой установки. В данном случае двигатель, силовая электроника и трансмиссия объединены в одно компактное устройство, которое приводит в движение ось автомобиля. Благодаря этому новая силовая установка Bosch e-axle не только более эффективна в работе, но и доступнее по цене.

Старт массового производства запланирован на 2019 год. Bosch создал адаптивный концепт данной установки и гарантирует, что каждый автопроизводитель получит удобное решение, которое легко интегрировать в производственный процесс.

До 6000 Нм крутящего момента и 300 кВт мощности

Основное преимущество системы осевого электрического привода e-axle – это простота настроек и возможность применения на различных типах транспортных средств. Так, полностью настроенная под автопроизводителя силовая установка поступит прямо на конвейерную линию сборки.

В зависимости от выбранной конфигурации силовая установка развивает мощность от 50 до 300 кВт (что примерно эквивалентно от 70 до 400 л. с.) и потому совместима с крупной техникой, такой как полностью электрифицированные грузовые автомобили. Крутящий момент на оси транспортного средства может достигать от 1 000 до 6 000 Нм. Электропривод возможно разместить как на передней, так и на задней оси. Силовая установка, развивающая 150 кВт (

Читайте также  Ювид м лодки моторы

200 л. с.) мощности, весит всего 90 кг, что намного легче по сравнению с массой компонентов, собранных по отдельности. Отличительной чертой системы осевого электрического привода Bosch является высокая производительность и возможность длительной работы при максимальной отдаче. Другими словами, e-axle может быстрее ускорить автомобиль и позволит ему двигаться на высоких скоростях более продолжительное время. Чтобы достичь этого, Bosch не только скомпоновал агрегаты в единый узел, но и улучшил двигатель и компоненты силовой электроники.

Что делает систему осевого электрического привода более эффективной по сравнению с обычной электрической силовой установкой?

Высокая эффективность каждого компонента – это основной фактор для соответствующей производительности всей системы. Так, у Bosch есть преимущество в виде многолетнего опыта на рынке. Кроме того, потери минимизируются путем уменьшения количества интерфейсов и компонентов, таких как высоковольтные кабели, разъемы и устройства охлаждения. Еще одно преимущество Bosch – возможность комбинирования отдельных компонентов для достижения оптимальных результатов. В случае системы осевого электрического привода e-axle не только повышается эффективность, но и улучшаются такие характеристики, как акустический комфорт и электромагнитная совместимость.

Когда система осевого электрического привода e-axle появится на рынке?

Bosch выпускает системы осевого электрического привода начиная с 2012 года (например, для моделей Peugeot 3008 и Fiat 500e), но силовая электроника не была в них интегрирована полностью. В данный момент Bosch находится на стадии разработки нового поколения системы e-axle, постоянно контактируя с автопроизводителями по всему миру. Образцы системы уже готовы к использованию и в настоящий момент проходят тестирование. Начало производства запланировано на 2019 год.

В каких автомобилях будет использоваться данная система?

Систему осевого электрического привода Bosch e-axle можно применять в любых типах транспортных средств. В гибридных и электрических автомобилях возможна установка электропривода как на передней, так и на задней оси. Bosch e-axle может применяться для любых транспортных средств общим весом до 7,5 т – как для легких грузовиков, так и для пассажирских автомобилей.

Почему система осевого электрического привода e-axle доступнее по сравнению с обычными силовыми агрегатами, которые уже используются в электромобилях?

Система осевого электрического привода e-axle объединяет силовую электронику, электродвигатель и трансмиссию в одно устройство. Таким образом, новый электрический силовой агрегат обходится без использования толстых и дорогих медных соединительных кабелей. Систему охлаждения можно упростить. Нет необходимости в дополнительных передающих элементах трансмиссии. Все это уменьшает стоимость электрической установки и повышает ее эффективность. Расположение трансмиссии рядом с двигателем позволяет сэкономить ценное компоновочное пространство – важный фактор в автомобилестроении.

Медный довод: создан уникальный двигатель для электромобилей

В России разработан мотор для электромобилей, обладающий рядом преимуществ перед зарубежными аналогами. Чтобы создать магнитное поле, необходимое для движения колес, в нем применяют обычную медную катушку. Двигатель увеличивает время пробега машины без подзарядки на 15% и исключает внезапную остановку из-за перегрева. При этом цена отечественного мотора в 3–4 раза ниже, чем у зарубежного. Разработчик планирует выпустить собственную линейку беспилотных грузовиков, оборудованных такими двигателями. Подобные машины уже тестируются иностранными компаниями, которые занимаются грузоперевозками.

Железо, медь и математика

Чаще всего в электромобилях используют моторы на постоянных магнитах. Однако такие двигатели имеют ряд существенных недостатков.

В постоянном магнитном поле проводник (рамка, по которой протекает ток) начинает двигаться. Движение передается на колеса машины, и она едет. Но когда проводник смещается в магнитном поле, по законам физики в нем возникает противоположно направленная сила (противо-ЭДС). Она уменьшает силу тока в проводнике, и в итоге автомобиль не может развить скорость более 60 км/ч. Чтобы ее увеличить, нужно уменьшить поле постоянного магнита — это снизит противо-ЭДС. Но чтобы сделать это, нужно потратить электроэнергию. В результате коэффициент полезного действия (КПД) двигателя падает, следовательно, аккумулятор быстрее разряжается.

–– Наш мотор, образно говоря, состоит из железа, меди и математики, –– рассказал технический директор компании «Электротранспортные технологии» Илья Федичев. –– Мы создаем магнитное поле с помощью медной катушки, через которую проходит ток. И поэтому можем спокойно им управлять: увеличивать для большей мощности и уменьшать для скоростного разгона авто без снижения КПД. По нашим расчетам, на российском моторе машина проедет примерно на 15% дольше –– конечно, при условии, что скорость и качество дороги будут такими же, как для авто с зарубежным двигателем.

Магнитные катушки с пропускаемым через них током известны в качестве источников магнитного поля с XIX века. Однако задействовать поле в работе электродвигателя –– очень непросто. Инженеры говорят, что их главное достижение — создание особой конструкции двигателя, которая и позволила обойтись без постоянных магнитов, заменив их на медную катушку — она создает магнитное поле с нужным направлением и интенсивностью.

Перегрев не страшен

Еще один недостаток действующих электромоторов –– размагничивание постоянного магнита из-за нагрева двигателя. Дело в том, что для каждого магнита есть точка Кюри –– температура, при которой он теряет свои свойства. Когда электромобиль внезапно начинает терять скорость, это значит, что магнит просто перегрелся. Он больше не создает поле для движения рамки, и автоматика принудительно уменьшает мощность мотора. Конечно, ситуация, при которой машина долго едет на максимальной скорости, встречается нечасто, однако способствовать перегреву может и жара.

Российский электромотор не имеет постоянного магнита, поэтому внезапное отключение ему не грозит. Также ему не нужны сложные, громоздкие и дорогостоящие системы охлаждения, как машинам на электродвигателях с постоянными магнитами. Инженеры провели эксперимент, нагревая мотор собственной разработки и зарубежные аналоги. Оказалось, что отечественный двигатель сохраняет характеристики при температуре до 150 ºС, в то время как иностранные модели перестают работать уже при 100 ºС.

Тем не менее большинство специалистов в мире всё же отдают предпочтение двигателям с постоянными магнитами, сообщил заведующий кафедрой электротехники и промышленной электротехники МГТУ им. Н.Э. Баумана Александр Красовский.

–– Следует учесть, что применяемая дополнительная «обмотка возбуждения», то есть та самая медная обмотка, потребляет дополнительную электрическую энергию аккумулятора, что несколько снижает КПД созданного двигателя, –– рассказал эксперт. –– Наличие обмотки ведет еще и к некоторому увеличению массы и габаритов двигателя. Зато к преимуществам предложенного российскими учеными аналога относится выгодная цена –– двигатели с постоянными магнитами имеют более сложную конструкцию, поэтому и стоят дороже.

Российский двигатель такой же мощности, как и зарубежный, дешевле не только благодаря простоте конструкции, но и применяемым материалам. Ведь 90% рынка постоянных магнитов занято Китаем, и производители диктуют цену на товар по своему усмотрению. Монополия может привести к внезапному скачку цен на постоянные магниты, а следовательно, и на электромоторы. Да и сегодня произведенный в Китае мотор стоит около 300 тыс. рублей, еще около 100 тыс. рублей уйдет на перевозку и налоги. Стоимость отечественного мотора при серийном производстве составит около 80 тыс. рублей.

Читайте также  183 мотор ваз свечи

Будущее за электромобилями

Электрические машины не наносят вреда экологии, поэтому власти Москвы планируют всячески поощрять их применение. На данный момент все электрокары имеют право на бесплатную парковку в любой точке столицы, сообщалось на конференции Forbes «Как заработать с помощью искусственного интеллекта в России». Также руководители мэрии предложили проекты по удешевлению оформления ОСАГО для электромобилей и предоставлению льгот для проезда по платным трассам. Некоторые компании, имеющие отношение к разработке транспортных средств, увидели и техническое преимущество электромобилей перед машинами на двигателях внутреннего сгорания.

–– Появление таких моторов –– значимое событие для машиностроения, особенно для формируемого рынка беспилотных транспортных средств, –– отметил эксперт в области робототехники и систем автоматизации транспорта Виталий Савельев. — Неприхотливость подобного мотора и высокий ресурс работы без обслуживания дают возможность эксплуатировать технику на его базе более эффективно. Развитие двигателей такого типа позволяет получить высокие тяговые характеристики одновременно с низким энергопотреблением, что увеличивает запас хода электромобиля. В перспективе электромоторы могут использоваться и на водных видах транспорта –– с их помощью можно создать практически бесшумные и энергоэффективные яхты и катера.

Разработчик отечественного двигателя в скором времени планирует выпустить линейку беспилотных грузовиков, которые могут быть востребованы, например, в компаниях, связанных с грузоперевозками, почтовой и курьерской доставкой.

При этом некоторые крупные зарубежные автоконцерны совместно с логистическими компаниями уже тестируют тягачи, рассчитанные на эксплуатацию без водителей.

Через несколько лет электромобили вытеснят с рынка машины с двигателями внутреннего сгорания, предполагают в компании-разработчике. Когда цена на литиевые батареи, используемые в электрокарах, упадет, ездить на них станет гораздо выгоднее. По информации зарубежных экспертов, стоимость батарей в последнее время быстро снижается. Так, в 2016 году цена литиевых аккумуляторов составляла $400–600 на киловатт-час емкости, а год назад — уже $250–300.

Электромобиль своими руками

Электромобиль своими руками

Электромобиль своими руками

  • BLDC-мотор (безщёточный безредукторный мотор на постоянных магнитах, требуемой мощности)
  • Контроллер такой же мощности. Контроллер — это сложное электронное устройство, которое:
    — преобразует постоянный ток из батареи в 3-х фазный переменный для питания мотор-колеса,
    — является регулятором уровня мощности (скорости), подаваемой в мотор, в зависимости от положения ручки газа.

Про типы BLDC-контроллеров можете прочитать по этой ссылке.

  • Батарея (аккумуляторная батарея, собранная из ячеек и соединённых с БМС (платой защиты ячеек от презарядапереразряда). Чаще всего используют тяговые литий-железо-фосфатные ячейки, которые выглядят так.
  • Управление:педаль газа либо ручка газа, тормозные рычаги (электронный тормоз), кнопка круиз-контроля (постоянная зафиксированная скорость), кнопка реверса (обратный ход). Педаль/ручка газа является обязательной, остальные — вспомогательные.
  • Какая средняя скорость планируется?
  • Какая максимальная скорость во время разгона?
  • Вес электромобиля (с батареей, водителем и пассажирами)?
  • Угол наклона дороги? Горная местность резко повышает требование в мощности мотора!
  • Площадь поперечного сечения автомобиля и его обтекаемость.
  • Диаметр колеса (от края покрышки до края) для правильного расчета коэффициента редукции (для тихоходных средств с редуктором).
  • Ускорение: Если Вам в гонках важен старт с места (к примеру, 100 км/ч за 4 сеунды). Для этих расчетов нужны другие формулы, будет в следующей статье.
  • Стиль вождения: спокойныйспортивный, городскоймежгород.
  • Дальность пробега.

Сx=0,342 (коэффициент аэродинамического сопротивления);

S=2м 2 (площадь поперечного сечения автомобиля);

g = 9.81 м/с 2 (ускорение свободного падения);

m=1000 кг (масса автомобиля);

Fтр= 0,018 (коэффициент силы трения для асфальта);

V 3 -(куб скорости автомобиля в м/с); 60 км/ч =16,67 м/с (переводим скорость из «км/ч» в «м/с» делением на 3,6);

α= 0° (угол наклона дороги);

ρв=1,225 кг/м 3 (плотность воздуха).

W= g * Fтр * m * V *cosα + 0,5*Сx * S * ρв*V 3 + g * m * sinα*V

W = 9,8 * 0,018 * 1000 * 16,67*1 + 0,5*0,342 * 2* 1,225*(16,67) 3 + 9,8 * 1000 * 0 = 2940+1940+0= 4 880 Вт.

Это сколько чистой энергии надо затратить на передвижение. Часть энергии теряется по пути из батареи. По этому, поделим полученный результат на общий КПД (трансмиссии (

0,95)) приблизительно равный 0,76*0,90*0,95=0,65.

Фактически из батареи надо выдать больше энергии, пока передадим эту энергию на движение, часть потеряется в узлах (на трение, теплоотдачу).

Итак, 4880 / 0,65=7509 Вт — такую мощность должна выдавать батарея.

Итого для движения по ровной дороге со скоростью 60 км/ч требуется 7509 Вт мощности системы.

Для того чтобы понять, как мощность зависит от скор ости и угла наклона дороги, произведём вычисления в Excel-е и создадим графики (*):