Электронная система зажигания для лодочного мотора

ЛОДКИ

ГИДРОЦИКЛЫ

ПОДВОДНЫЕ ЛОДКИ

ЛОДОЧНЫЕ МОТОРЫ

СТОЯНКА / ХРАНЕНИЕ

ЖУРНАЛЫ

Навигация по сайту: Главная — Подвесные лодочные моторы — Вихрь

Ремонт системы зажигания и энергопитания лодочного мотора «Вихрь»

Система зажигания — магнето и магдино — лодочного мотора «Вихрь»

Система зажигания служит для своевременного воспламенения сжатой рабочей смеси в цилиндре двигателя. Она состоит из магнето или магдино, установленных на верхней части двигателя и приводимых во вращение коленчатым валом, высоковольтных трансформаторов, свечей зажигания с соединительными проводами, кнопки «стоп» и штекерного разъема систем энергопитания.

Воспламенение рабочей смеси в цилиндре карбюраторного двигателя происходит при искровом разряде между электродами свечи зажигания. Для образования искры необходимо высокое напряжение — 15 000 В и более. Напряжение, требуемое для надежного воспламенения смеси, зависит от зазора между электродами свечи, параметров смеси в момент искрообразования, ее состава и других факторов.

Источником тока такого напряжения на всех подвесных лодочных моторах «Вихрь» служит двухискровое маховичное магнето (или магдино) с выносными высоковольтными трансформаторами.

Магнето — это устройство из магнитных и электрических цепей, работающее по принципу электромагнитной индукции. Магнитная цепь состоит из постоянных магнитов, закрепленных на магнитопроводе (ободе маховика), и сердечника первичной обмотки катушки зажигания.

В электрическую цепь входят: первичная обмотка катушки зажигания КЗ (рис. 77), обмотки выносных высоковольтных трансформаторов ВТ1 и ВТ2, прерывательные механизмы Пр1 и Пр2 и конденсаторы К1 и К2. При вращении маховика башмаки магнитов, проходя с небольшим зазором около сердечника катушки зажигания, создают в ней переменное магнитное поле, которое индуцирует в обмотке катушки переменную ЭДС. Прерывательные механизмы верхнего и нижнего цилиндров замкнуты, и в обмотке катушки возникает переменный электрический ток.

Рис. 77. Принципиальная схема контактной системы зажигания

В момент, когда необходимо воспламенить смесь в цилиндре, один из прерывателей принудительно размыкается кулачком, насаженным на ступицу маховика, и в цепь электрического тока включается первичная обмотка соответствующего высоковольтного трансформатора. Коэффициент трансформации — отношение количества витков вторичной обмотки к количеству витков первичной обмотки очень высок (50-100). Поэтому низкое напряжение в первичной обмотке преобразуется в высокое на вторичной обмотке, подается на свечу, в искровом промежутке которой и проскакивает искра.

При размыкании контактов прерывателя амплитуда импульсного напряжения в низковольтных электрических цепях может достигать высоких значений (200-300 В). Это вызывает усиленное искрообразование в контактах, что снижает скорость нарастания напряжения в высоковольтном трансформаторе. Во избежание этих явлений параллельно каждому прерывательному механизму подключен конденсатор. При дальнейшем вращении маховика прерыватель вновь замыкается, и весь процесс повторяется для второго цилиндра.

Прерывательный механизм

Прерывательный механизм (рис. 78) состоит из изолированного от массы коромысла 4 с текстолитовой подушечкой на одном плече и вольфрамовым контактом на другом, основания 1 с неподвижным контактом и пластинчатой пружины, поджимающей подвижный контакт коромысла к неподвижному контакту основания.

Эксцентриковый винт 5 служит для регулирования зазоров между контактами прерывателя.

Рис. 78. Прерывательный механизм: а — магнето МГ-101 (МГ-101 А); б — магдино МВ-1. 1 — основание прерывательного механизма; 2 — винт крепления прерывательного механизма; 3 — основание магнето или магдино; 4 — коромысло; 5 — эксцентриковый винт регулирования зазора

По диаметральной оси основания магнето под углом 180° относительно друг друга расположены два прерывательных механизма. За один оборот коленчатого вала кулачок последовательно через 180° размыкает контакты механизмов верхнего и нижнего цилиндров.

Выше уже отмечалось, что воспламенение смеси в цилиндре должно происходить не при положении поршня в ВМТ, а в момент, когда поршень не доходит до ВМТ на определенное расстояние, называемое опережением зажигания. Изменение величины опережения зажигания от наименьшей при малой частоте вращения до максимальной при больших нагрузках осуществляется поворотом ручки управления газом. При этом открывается дроссельная заслонка карбюратора и поворачивается основание магнето против направления вращения маховика. В результате подушечки коромысел прерывателей встречаются с выступом кулачка, расположенного на маховике, несколько раньше и опережение зажигания увеличивается. При повороте ручки «газа» в обратную сторону основание магнето поворачивается по направлению вращения маховика, и опережение уменьшается.

Магдино

Магдино конструктивно обличается от магнето только тем, что имеет в дополнение к первичной обмотке катушки зажигания сердечник с генераторной катушкой для питания электроэнергией бортовой электросети лодки. Системы зажигания и электропитания электрически не связаны между собой и работают независимо одна от другой. Моторы семейства «Вихрь» начиная с 1964 г. комплектовались последовательно четырьмя системами зажигания с магдино МГ-101, МГ-101А, МВ-1 и электронной системой МБ-2. Поскольку в эксплуатации до сих пор находятся даже моторы первых выпусков, у их владельцев, естественно, возникают вопросы по ремонту, заменам отдельных узлов и целиком систем зажигания. В любом случае важно помнить, что каждая система состоит из магдино (магнетодинамо), двух высоковольтных трансформаторов, маховика и свечей зажигания.

Магдино может быть контактным, т. е. имеющим прерывательный механизм, состоящий из подвижного и неподвижного контактов (МГ-101, МГ-101А, МВ-1), и бесконтактным — электронным, не имеющим прерывателей МБ-2. До октября 1972 г. моторы «Вихрь» комплектовались наиболее простым по конструкции магдино МГ-101, не имевшем катушек освещения и подзарядки аккумуляторов. На основании этого магнето смонтированы сердечник с первичной обмоткой катушки зажигания, имеющей 210±10 витков провода ПЭВ-2 диаметром 0.93 мм (7 рядов по 30 витков), два конденсатора емкостью по 0.3 мкФ и два прерывательных механизма. Из основания выходят только два вывода, идущих к высоковольтным катушкам (трансформаторам) ИЖ56Тсб39.

В магдино МГ- 101А есть еще катушка питания освещения, имеющая 150±7 витков провода ПЭТВ диаметром 0.74 мм. Она установлена на месте конденсаторов, которые убраны с основания и закреплены на картере. Это магдино имеет четыре вывода, два — к высоковольтным катушкам и два — к системе освещения. Катушка питания освещения обеспечивает напряжение 12 В мощностью 30 Вт; по габаритам она меньше катушки зажигания.

Маховики системы зажигания лодочного мотора Вихрь

Прерывательные механизмы магнето МГ-101 и МГ-101А одинаковые, величина зазора в них (0.3-0.4 мм) регулируется с помощью отвертки через окно в маховике, расположенное диаметрально противоположно пазу на ободе маховика для крепления шнура аварийного запуска.

Системы зажигания с МГ-101 и МГ-101А комплектовались высоковольтными трансформаторами ИЖ56сб39, которые крепились к шпилькам, ввернутым спереди в среднюю часть картера.

В моторах «Вихрь» и первых партиях лодочных моторов «Вихрь-М» применен маховик с шестью постоянными магнитами, расположенными внутои обода с постоянным шагом 60°. Для мотора «Вихрь» этот маховик имел номер 2.119-000, для мотора «Вихрь-М» — 4.119-000 (рис. 79).

Рис. 79. Общий вид маховиков: а — для электронной системы зажигания МБ-2 (4.121-000); б — то же, МБ-22 (3.119-800); в — для контактной системы зажигания МВ-1 (2.119-000) мотора «Вихрь»; г — то же (4.119-700) для мотора «Вихрь-М»

С начала 1971 г. на маховик не ставили два магнита (третий и шестой от шпоночного паза по часовой стрелке, если смотреть изнутри маховика), в результате чего шаг магнитов по ободу стал неравномерным (120—60—120—60°). Номера маховиков не изменялись.

При полной, на первый взгляд, идентичности маховики «Вихря» и «Вихря-М» различны и не могут переставляться с одного мотора на другой. Это объясняется тем, что величина опережения зажигания у этих моторов различна — у «Вихря» — 38° до верхней мертвой точки поршня (или 7.87 мм), у «Вихря-М» — 30° (5.02 мм). Такое изменение максимального угла опережения выполнено за счет разворота на 8° кулачка, расположенного на ступице маховика. Отличить маховики можно по угловому расположению кулачка на их ступице. На маховиках 2.119-000 отверстие для крепления кулачка смещено от оси шпоночного паза на 10°, а на маховике 4.119-100 — на 18° (рис. 80).

Рис. 80. Крепление кулачка (вид со стороны магнитов) на маховиках 2.119-000 и 4.119-000 для магнето МГ-101 (а) и 4.119-700 для магдино МВ-1 (б). 1 — положение отверстия для крепления кулачка на маховике двигателя «Вихрь» с опережением зажигания 7.87 мм до ВМТ (38º); 2 — то же для двигателей «Вихрь-М» и «Вихрь-30» с опережением зажигания 5.05 ммдо ВМТ (30º).

Комплектование лодочных моторов Вихрь системами зажигания

С октября 1972 г. лодочные моторы » Вихрь -М», а затем и моторы «Вихрь-30» комплектуются более современной и надежной системой зажигания с магдино MB-1, которая конструктивно значительно отличается от системы с магдино МГ-101. На основании магдино МВ-1 установлены два стальных сердечника, два прерывателя и два конденсатора емкостью по 0.3 мкФ. На одном сердечнике расположены две катушки системы зажигания. Каждая катушка имеет 360±5 витков провода ПЭВ-2 00.57 мм. На другом сердечнике установлены две катушки системы освещения (подзарядки аккумулятора), включенные параллельно. На каждую катушку намотано 160±5 витков провода ПЭВ-2 00.86 мм. Катушки освещения вырабатывают ток напряжением 12 В при мощности 30 Вт.

Эта система зажигания комплектуется высоковольтными трансформаторами типа ТЛМ. Они полностью залиты капроном во избежание попадания влаги и, естественно, с целью повышения надежности эксплуатации. Трансформаторы ТЛМ, поскольку их габариты отличаются от габаритов ИЖ56сб39, крепятся на двигатель с помощью кронштейна 4.174-001 ( рис. 81 ), который также крепится на шпильках, ввернутых спереди в среднюю часть картера моторов с ручным запуском и сбоку на блоке цилиндров у моторов с электрозапуском. В комплект кронштейна 4.174-001 входит также крепеж — четыре болта 3003А6-24-15 с гайками 3315АС, плоские и пружинные шайбы.

Читайте также  Как покрасить лодочный мотор нептун

Рис. 81 . Кронштейн 4.174-001 для крепления трансформаторов ТЛМ (а) и 4.003-001 для трансформатора ЦШ5.720-001-1 (б)

От катушек систем зажигания и электроснабжения из основания магдино МВ-1 ( рис. 82 ) выводятся четыре проводника, которые закрепляются в переходном клеммнике, установленном на кронштейне высоковольтных трансформаторов. Одна пара проводов (одноцветные желтые, оранжевые или коричневые) соединена с генераторными катушками и подсоединяется снизу к двум средним клеммам клеммника. Вторая пара разноцветных проводов подсоединяется сверху к двум крайним клеммам. При этом провода белого или серого цвета крепятся к правой клемме, к которой прикреплен и провод первичной обмотки трансформатора верхнего цилиндра, а провод черного или фиолетового цвета — к левой клемме, соединенной с трансформатором нижнего цилиндра. С этими клеммами соединена кнопка «стоп» мотора, установленная на поддоне. К средним клеммам можно подсоединять провода электропитания лодки.

Рис. 82 . Общая схема магдино МВ-1. 1 — катушки питания зажигания; 2 — конденсаторы; 3 — прерыватели; 4 — кулачок; 5 — генераторные катушки; 6 — клеммник; 7 — высоковольтные трансформаторы ТЛМ; 8 — электрическая нагрузка; 9 — кнопка «стоп»; 10 — запальные свечи

В отличие от трансформаторов ИЖ56сб39 трансформатор ТЛМ специального вывода провода «масса» не имеет — соединение с сердечником осуществлено внутри трансформатора, и поэтому электрический контакт с «массой» обеспечивается только тогда, когда крепежные болты трансформатора плотно затянуты. Это нужно учитывать при выявлении неисправностей в системе зажигания. Система комплектуется маховиком 4.119-700 с четырьмя постоянными магнитами, расположенными по окружности через 90°. Отличительная особенность маховиков — удлиненные полюсные башмаки на постоянных магнитах. Маховик с зубчатым венцом моторов, запускающихся от электростартера, имеет номер 3.119-701.

Зазор в прерывателях магдино MB-1 регулируется через окно в диске маховика, расположенное рядом с пазом для шнура аварийного запуска.

Как уже было сказано, с 1982 г. лодочные моторы » Вихрь » всех моделей комплектуются электронной бесконтактной системой зажигания МБ-2. В наименование каждой модели мотора добавлено слово «электрон». Электронная система зажигания состоит из основания магдино МБ-2, двух высоковольтных трансформаторов ЦШ5.720-001-01, маховика с измененными полюсными башмаками и двух свечей зажигания.

Маховик имеет новый номер 4.121-000, а для моторов, оборудованных системой электрозапуска, — 4.121 -000-01. Эти маховики имеют характерную форму полюсных башмаков (см. рис. 77). Электронное магдино имеет тиристорную схему с накоплением энергии в конденсаторе (рис. 83). На основании магдино установлены две генераторные катушки для питания бортовой сети освещения судна или подзарядки аккумулятора, две катушки, вырабатывающие энергию для искрообразования, и электронный блок с датчиком.

Рис. 83 . Принципиальная схема электронного зажигания с магдино МБ-2. L1 — катушка зажигания, 2000±50 витков ПЭТВ-2 Ø0.1 мм; L2 — катушка зажигания, 8000+50-150 витков ПЭТВ-2 Ø0.1 мм; L3 — катушка 4070±30 витков ПЭТВ-2 Ø0.08 мм; L4 — катушка освещения 160±5 витков ПЭТВ-2 Ø0.85; VI-V5 — диоды Д218; V6-V7 — тиристор КАУ202 (Л, M или Н); R1 — резистор МЛТ-0.25, 47 Ом ±5%; C1 — К73-17, 400 В 1 мкФ±10%. Подключение концов проводов: HI — к высоковольтному трансформатору верхнего цилиндра; Н2 — к высоковольтному трансформатору нижнего цилиндра; НЗ — к кнопке «стоп»; Н4, Н5 — к бортовой сети освещения

При вращении маховика выступы полюсных башмаков, проходя мимо датчика, вызывают разряд накопительного конденсатора через высоковольтные трансформаторы, повышающие выходное напряжение до 12 000-30 000 В, которое подается на свечи зажигания. Из основания магдино выведены пары проводов. Провода от катушек освещения — белого цвета; провода к трансформаторам — синего цвета для нижнего цилиндра, зеленого для верхнего; провода к кнопке «стоп» — красного или черного цвета ( рис. 84 ).

Рис. 84 . Принципиальная монтажная схема электрооборудования моторов «Вихрь-25Р электрон», «Вихрь-30Р электрон» (а) и «Вихрь-30 электрон» с электрозапуском (б). 1 — магнето МБ-2; 2 — блок ВБГ-ЗА; 3 — высоковольтные трансформаторы; 4 — кнопка «стоп» на поддоне; 5 — электролампа; 6 — шестой вывод магнето выпуска до 1984 г.; 7 — стартер СТ-369; 8 — аккумуляторная батарея; 9 — кнопка «стоп» на пульте; 10 — кнопка «пуск»

В результате улучшения качества и надежности моторов «Вихрь» и комплектующих их агрегатов в конце 1983 г. электронное магдино МБ-2 было модернизировано. Вследствие переработки схемы улучшились параметры электронной системы зажигания: понижены начальные обороты искрообразования, увеличена надежность конденсатора, датчика и т. д. «Опознать» модернизированное магдино очень просто: оно имеет пять выводов проводов вместо шести на ранее выпускавшихся. На кнопку «стоп» задействован один провод (красный, черный), а второй провод, идущий от кнопки «стоп», соединяется с «массой» при помощи провода-перемычки.

В связи с отсутствием механических контактов электронное магдино не подвержено износу и не требует обслуживания и регулировок. Электронный блок выполнен на бескорпусных элементах, защищен компаундом и поэтому герметичен, но разборке и ремонту не подлежит. Поэтому относиться к электронному магдино следует аккуратно, не перекручивать выходящие провода, не бросать и быть особенно внимательным при эксплуатации системы, имеющей аккумуляторную батарею. Следует помнить, что замыкание проводов, ведущих к трансформаторам, на плюс (+) аккумуляторной батареи, приводит к выходу из строя магдино. Поэтому до начала ремонтных работ следует отключить аккумуляторную батарею.

В случае отсутствия или ослабления искры следует проверить целостность проводов и наличие-отсутствие замыкания или загрязнения кнопки «стоп».

Несколько замечаний о взаимозаменяемости различных систем зажигания. Если необходимо заменить на «Вихре» магнето МГ-101 или МГ-101А на MB-1, то нужно учитывать, что система зажигания с МВ-1 разработана для моторов «Вихрь-М» и «Вихрь-30». Кулачок на маховике обеспечивает максимальный угол опережения зажигания 30° (5.02 мм до ВМТ). Поэтому, устанавливая магдино МВ-1 на мотор «Вихрь», следует обеспечить больший угол опережения (38°), сместив отверстия в рычаге поворота основания магдино на 8° против направления вращения маховика или сместив кулачок маховика. Можно также укоротить рычаг поворота магдино на 8 мм на приводе воздушной заслонки (2.126-000).

Системы зажигания MB-1 и МБ-2 комплектно взаимозаменяемые на моделях «Вихрь-М», «Вихрь-30Р», «Вихрь-30». На моторы «электрон» можно устанавливать контактную систему MB-1 и, наоборот, систему МВ-1 можно заменять электронной системой МБ-2.

Посадочные места магдино всех систем на картере моторо «Вихрь» любых моделей и их крепление одинаковы. Основные детали магдино МВ-1 унифицированы с магдино МН-1, применявшихся на подвесных моторах «Нептун» всех моделей, «Привет-22» и «Прибой». Прерывательные механизмы, конденсаторы от магдино МН-1 перечисленных моторов можно применять для магдино MB-1.

Катушки зажигания ИЖ56сб39 и трансформаторы ЦШ5.720-001-01 можно заменять трансформаторами ТЛМ. Обратная замена недопустима, так как напряжение в первичной обмотке трансформатора ЦШ5.720-001-01 в электронной системе зажигания более высокое, чем в системе MB-1, поэтому эти трансформаторы в контактной системе не обеспечат достаточного напряжения на электродах свечей зажигания. Трансформаторы ЦШ5.720-001-01 крепятся на двигателе при помощи кронштейна 4.003-001 (см. рис. 87 ).

Рис. 87 . Схема износа контактов прерывательного механизма: а — несовпадение осей контактов; б — несовпадение плоскостей (перекос) контактов; в — правильное расположение контактов; г — износ контактов при несовпадении осей; д — износ контактов при перекосе; е — естественный износ контактов

Важным элементом системы зажигания является запальная свеча. Она ввернута в резьбовое отверстие головки цилиндров, обоазующей камеру сгорания. Штатные свечи для «Вихрей» — СИ-12, СИ-12Р и СИ-12РТ.

Электронная система зажигания мотора «Нептун-23»

Конструкция В. П. Токмакова является первой попыткой оборудовать «Нептун-23» современной надежной системой зажигания, причем автор остроумно решил вопрос получения управляющего импульса за счет поля рассеяния магнитной системы маховика. Однако следует предупредить водномоторников, желающих повторить эту конструкцию, о необходимости тщательного изготовления крепежных винтов маховика. Штатные стальные винты изготовлены из стали 30ХГСА с термообработкой до HRC=33-39. Немагнитные винты могут быть изготовлены из латуней марки Л62, ЛМц58-2, ЛЖМи59-1-1 или, лучше, бериллиевой закаленной бронзы БрБ2, имеющих высокие механические показатели. Дополнительно при установке башмаков желательно применить клей.

Предлагаемую ЭСЗ можно также применить и на подвесных моторах «Привет-22» и «Прибой», укомплектованных магдино МИ-1 и имеющих алюминиевые маховики.

Возможно также изготовление по предлагаемой схеме и двухканальной системы — отдельно для каждого цилиндра. Для этого необходимо заменить на немагнитные три крепежных винта маховика из четырех, изготовить два электронных блока и на основание магнето диаметрально противоположно установить два магнитных датчика.

Преимущества электронных систем зажигания (ЭСЗ) перед электромеханическими, особенно при использовании на подвесных моторах, общеизвестны. Однако до сих пор, к сожалению, ни один из отечественных лодочных моторов не выпускается с электронной системой. На страницах сборника публиковались конструкции ЭСЗ, разработанные любителями, но они были рассчитаны на мотор «Вихрь» и чаще всего отличались чрезмерной сложностью.

На мой взгляд, ЭСЗ для самостоятельного изготовления должна отличаться максимальной простотой без снижения надежности, должна сохраняться возможность быстро перейти на штатную систему зажигания, объем переделок в самом моторе должен быть минимальным. При разработке ЭСЗ для своего «Нептуна» (система пригодна для всех модификаций этого мотора) я и стремился выполнить эти три требования.

Читайте также  Как правильно оформить покупку лодки с мотором

Принципиальная схема ЭСЗ мало отличается от уже знакомых читателям (см. №45 или №63) и включает накопительный конденсатор С, электронный прерыватель на тринисторе ДЗ, высоковольтные трансформаторы ВТ1 и ВТ2 и систему управления с магнитным датчиком ДМ. Схема одноканальная, т. е. искра в запальных свечах возникает одновременно в обоих цилиндрах.

Основное отличие предлагаемой схемы заключается в конструкции системы управления и принципе получения управляющего импульса. Я воспользовался тем, что маховик «Нептуна» выполнен из алюминиевого сплава, а башмаки магнитной системы крепятся стальными винтами. Благодаря этому каждая головка винта образует на поверхности обода маховика местное магнитное поле рассеяния такой величины, что наведенный импульс ЭДС в магнитном датчике без предварительного усиления достаточен для отпирания тринистора. Импульс от датчика выпрямляется диодом Д1 и ограничивается по амплитуде резистором R1 и стабилитроном Д2.

На двухцилиндровом двигателе необходимо за один оборот коленчатого вала получать две искры — последовательно через 180° в верхнем и нижнем цилиндрах. Маховик «Нептуна» имеет четыре полюсных башмака и соответственно четыре стальных крепежных винта, поэтому два из них (любые диаметрально расположенные винты) необходимо заменить на сделанные из немагнитного материала — латуни или бронзы. Оставшиеся два стальных винта будут индуцировать в датчике импульс через 180°.

Питание ЭСЗ может осуществляться любым из трех способов: от специального преобразователя напряжения, обеспечивающего постоянное напряжение 300 В (можно воспользоваться схемой преобразователя, опубликованной в №45); непосредственно от генераторных катушек магнето через повышающий трансформатор Тр или от генераторных катушек, перемотанных для получения после выпрямителя 300 В.

Каждый из этих способов имеет свои преимущества и недостатки. Первый способ предпочтителен для лодок, оборудованных аккумулятором, постоянно подзаряжаемым от генераторных катушек. При использовании преобразователя мощность искры не будет зависеть от числа оборотов, что обеспечивает надежный запуск мотора. Второй способ наиболее прост, тем более, что можно применить трансформатор заводского изготовления (например, выходной трансформатор кадровой развертки телевизоров), но появляются дополнительные потери энергии в трансформаторе. Третий способ несколько сложнее, так как требуется перемотка катушек. Оба последних способа могут быть применены при отсутствии аккумуляторов, но при этом мощность искры будет зависеть от числа оборотов коленчатого вала и на максимальных оборотах напряжение может превысить величину произвольного отпирания тринистора (поэтому следует подбирать тринисторы с возможно более высоким рабочим напряжением 400—600 В).

В качестве датчика ДМ в данной схеме применена катушка малогабаритного реле типа РСМ, хотя в принципе можно использовать и катушки других аналогичных реле с числом витков не менее 3000. Катушка устанавливается с наружной стороны маховика на уровне головок винтов крепления башмаков маховика. Величина зазора между сердечником катушки и маховиком должна составлять 1—2 мм.

Датчик устанавливается на кронштейне, место крепления которого к основанию магнето выбирается следующим образом. Основание магнето поворачивается в положение максимального опережения (ручка румпеля в положении «полный газ»). Поршень любого из цилиндров устанавливается на расстояние 4,5 мм до ВМТ и кронштейн датчика закрепляется на основании так, чтобы сердечник его находился напротив оси одного из стальных винтов. На некоторых моторах шляпки крепежных винтов чрезмерно утоплены в ободе маховика, в связи с чем обеспечить зазор 1—2 мм не удается. В таких случаях следует винты заменить, ввернув стальные же винты с более высокой потайной головкой. Головку винта нужно закернить, чтобы предотвратить самоотворачивание, и заточить напильником заподлицо с поверхностью маховика.

Все детали электронного блока монтируются на стеклотекстолитовой плате и помещаются в металлическую коробку подходящего размера (я использовал коробку из-под чая). Блок крепится на поддоне в передней части двигателя и соединяется с источником питания на разъемах.

Правильно собранная из заведомо проверенных деталей система наладки не требует. При отсутствии искрообразования нужно уменьшить зазор между датчиком и маховиком или уменьшить величину сопротивления R (см. схему) до 1—2 кОм.

Эксплуатация ЭСЗ подтвердила высокую надежность и эффективность конструкции, переходить на штатную систему зажигания так и не приходилось. Мотор заводится, как правило, с первой попытки в любых условиях.

При помощи мулинетки (см. сборник №59) я измерил мощность, снимаемую с каждого цилиндра двигателя. Оказалось, что при работе со штатной системой зажигания мощность, снимаемая с верхнего цилиндра, примерно на 5—7% выше, чем нижнего. Видимо, это и являлось причиной постоянной вибрации мотора, особенно заметной на холостом ходу. При переходе на работу с ЭСЗ мощности, снимаемые с обоих цилиндров, оказались совершенно одинаковыми, вибрация намного уменьшилась.

Бесконтактная электронная система зажигания для лодочного мотора

При разработке системы ставилась задача создания надежного, малогабаритного и экономичного устройства, которое использовалось бы не только в системе зажигания лодочного мотора, ио и для создания дополнительных удобств любителям водио-моторного туризма.

Система дополнительно обеспечивает электропитание средств световой сигнализации (ходовые и топовые огии, электронная отмашка), электробритвы и кофейной мельницы и подзарядку аккумуляторов, для чего в нее введен мощный (60 Вт) преобразователь напряжения.

Система (автор конструкции А. Ф. Байдак, экспонат 27-й ВРВ) состоит из трех основных узлов: блока зажигания (рис. 5-21, а, б), преобразователя (рис. 5-21, в) и тиристорного реле-регулятора (рис. 5-21,г) для подзаряда аккумуляторов.

Блок зажигания содержит два идентичных канала зажигания БЗ для иижиего и верхнего цилиндров двигателя.

Для повышения экономичности и облегчения режима работы преобразователя в системе применен резонансный метод заряда накопительного конденсатора Сх через дроссель Дрх (рис. 5-21, а) и диод Дх (рис. 5-21,6). При обычно применяемом методе непосредственного заряда, например в промышленной системе «Электроника 1», в моменты, когда разрядный тиристор открыт, преобразователь закорачивается и колебания его (если это автогенератор) срываются. Когда тиристор закрывается, преобразователь запускается, затем его колебания снова срываются и т. д. Таким образом, преобразователь работает в переходном режиме, что ведет к повышению мощности, рассеиваемой на транзисторах, снижению его к. п. д., снижению надежности и увеличению габаритов устройства. (К. п. д. заряда при таком методе пропорционален постоянной времени цепи заряда, и чтобы энергия искры не уменьшалась ниже нормы на высоких оборотах, постоянная времени должна быть малой.) При резонансном методе эти недостатки устраняются; кроме того, напряжение на накопительном конденсаторе при этом составляет примерно 1,8—1,9 напряжения источника питания, что позволяет снизить требования к изоляции трансформатора преобразователя и применять более дешевые диоды в выпрямителе.

Работает блок зажигания следующим образом: зарядный пульсирующий ток через диод Д заряжает накопительный конденсатор С. Диод Д препятствует разряду конденсатора, когда пульсирующее напряжение и а ием начинает уменьшаться. Одиовремеиио от источника «+14,5 В» через резистор Л3 заряжается разрядный конденсатор цепи запуска тиристора Сз. Когда от бесконтактного параметрического датчика (построенного таким образом, что при пересечении его зазора металлической лопаткой, закрепленной на маховике, вырабатывается импульс напряжения) приходит положительный импульс, транзистор Тх открывается и конденсатор С3 разряжается через управляющий электрод тиристора Д9. Тиристор открывается, и конденсатор Сх разряжается через тиристор и катушку зажига-

ния—возникает искра. Когда напряжение колебательного контура, образованного конденсатором С] и катушкой зажигания, переходит через нуль, ток тиристора становится меньше тока удержания н тиристор закрывается. Затем снова начинается заряд конденсаторов Cj и С3 и т. д.

Постоянная времени /?3, С3 выбирается такой, чтобы конденсатор С3 успевал зарядиться до напряжения, необходимого для включения тиристора при максимальных оборотах двигателя (5000 об/мин).

Если число оборотов превышает 5800—6000 об/мин, С$ не успевает зарядиться, тиристор включается не каждый раз и происходит ограничение оборотов. Это предохраняет двигатель от поломок при внезапном повышении числа оборотов, например при наезде и а препятствие и срезе шпонки гребного винта.

Диод Дх служит для демпфирования колебаний и предотвращения самопроизвольного повышения напряжения на конденсаторе С i*

При резонансном заряде средний ток, потребляемый от источника питания, пропорционален числу импульсов в единицу времени, т. е. числу оборотов. Измерив этот ток и соответственно откалибровав шкалу миллиамперметра, можно измерять обороты двигатели, не создавая никаких специальных приборов.

Детали: резисторы Ri—/?*—ВС-0,125; конденсаторы: С—МБГО- 1,0X500 В; С2—КСО; С3—К50-6; С7—К50-3; дроссель Дрг. сердечник от выходного трансформатора приемника «Сувенир», обмотка— 600 витков провода ПЭВ-2 диаметром 0,23 мм; разъем Ш3 РШАВ ПБП-14-1.

На рис. 5-21, в изображена принципиальная схема блока преобразователя. Ввиду большой мощности и для получения высокого к. п. д. преобразователь собран по схеме с внешним возбуждением. На транзисторах Ть 7г собран задающий генератор, на транзисторах Г3, Tk—усилитель мощности. Выходной трансформатор Трг имеет три вторичные обмотки, которые через выпрямители питают: +300 В — электронные отмашки, +220 В — блок зажигания или внешнюю нагрузку, +14,5 В через стабилизатор — блок зажигания и реле-регулятор.

Минус выпрямителя «+220 В» заземляется через шунт /?s, с которого снимается напряжение и а микро амперметр тахометра. Напряжение стабилизатора +14,5 В подают на выход блока через контакты кнопочного переключателя Я2 «Стоп». При нажатой кнопке «Стоп» напряжение +14,5 В не поступает на цепи запуска тиристоров и двигатель останавливается. Основное назначение стабилизатора «+14,5 В» — создание опорного напряжения для реле-регулятора. Для питания датчиков и цепей запуска тиристоров необходимости в стабилизированном напряжении иет, но его применение полезно для сокращения числа соединительных проводов.

Читайте также  Как проверить снятый мотор двигатель

Кроме функции кнопки «Стоп», переключатель Я2 выполняет еще две функции. В отжатом положении он подключает накопительный конденсатор С5 импульсных ламп отмашек к выпрямителю +300 В, а выпрямитель +220 В — к блоку зажигания. В нажатом положении он подключает выпрямитель +220 В к розетке внешнего потребителя и подключает сюда конденсатор Сб; кроме того, он закорачивает шунт %, поскольку внешний потребитель может потреблять значительно больший ток, чем блок зажигания.

Детали: резисторы Ru Rz, Ri — МЛТ-0,25; Re—МЛТ-2; R3, Re— проволочные конденсаторы: Ci—МБМ; С2—С*—К50-6; С3—К50-7; переключатели Пи Яг—П2К; Вг — ВТЗ; трансформаторы: Тр — сердечник ОЛ 10X14X5, сплав ЗЗНКМС, обмотки: I—2X120 витков провода ПЭВ-2 диаметром 0,23 мм, II — 2X30 витков провода ПЭВ-2 диаметром 0,16 мм, III—3X30 витков провода ПЭВ-2 диаметром 0,59 мм; Трг—сердечник ОЛ 20X32X10, сплав ЗЗНКМС, обмотки:

I—2X28 витков провода ПЭВ-2 диаметром 0,96 мм; II—800 витков провода ПЭВ-2 диаметром 0,1 мм; III—500 витков провода ПЭВ-2 диаметром 0,23 мм; IV — 45 витков провода ПЭВ-2 диаметром 0,23 мм; разъем ΙΠι РШАВ ПБП-14-1.

На рис. 5-21, г изображена принципиальная схема реле-регулятора, который представляет собой тиристорный стабилизатор напряжения. Он ограничивает зарядный ток при больших оборотах двигателя. Стабилизатор поддерживает оптимальное напряжение буферного заряда 13,5 В. Работает он следующим образом: напряжение от генераторных катушек мотора, имеющее после выпрямителя Дз— Де вид коммутированной синусоиды, поступает на анод тиристора

Дь Если напряжение на аккумуляторе меньше опорного напряжения на затворе тиристора минус напряжение, необходимое для открывания тиристора (примерно 1 В), то тиристор открыт и аккумулятор заряжается.

В моменты перехода входного напряжения через нуль тиристор закрывается, затем снова открывается и т. д. Таким образом, частота зарядных импульсов изменяется, становясь меньше по мере заряда аккумулятора. Диод Дх необходим для предотвращения разряда аккумулятора через управляющий переход тиристора при неработающем двигателе.

Реле-регулятор и блок зажигания устанавливают на моторе, блок преобразователя — в кокпите у места водителя. Датчики устанавливают на дюралюминиевых кронштейнах, закрепленных на основании картера. На маховике двигателя закрепляют латунную лопатку шириной 10 мм, выступающую за маховик и а б мм. Толщина лопатки 0,4—0,5 мм. На диаметрально противоположной стороне маховика закрепляют противовес, необходимый для сохранения балансировки маховика.

Штатный разъем мотора («Нептун-23») для подключения кнопки «Стоп» и освещения (2РМД18ВПН4Г5В) заменяется и а разъем 2РМ18Б7Ш1В1.

Фонари отмашек закрепляют на ветровом стекле лодки или и а кронштейнах и а палубе.

Для надежного поджига ламп ИФК-120 цепи поджига располагаются иепосредствеиио в фонарях. Импульсный трансформатор Трх (рис. 5-21, г) наматываются на хлорвиниловой трубке диаметром 3 мм; его первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,55 м, а вторичная — 500 витков провода ПЭВ-2 диаметром 0,1; изоляция между слоями — кабельная бумага. Постоянная времени Ru С выбирается такой, чтобы частота миганий составляла примерно 1 Гц.

Основные технические данные системы зажигания:

1. Напряжение питания*—2 В (две аккумуляторные батареи от мотоцикла емкостью 8 А-ч).

2. Ток, потребляемый от аккумулятора при максимальных оборотах 1,2 А.

3. Ток, потребляемый при неработающем двигателе, 0,16 А.

4. Энергия искры не меиее 0,08 Дж.

5. Энергия вспышки лампы-отмашки 10 Дж.

6. Максимальная мощность внешних потребителей постоянного тока напряжением 220 В 40—60 Вт.

7. Система имеет ограничитель оборотов двигателя; порог ограничения 5600—6000 об/мин.

8. Система обеспечивает надежный запуск и работу двигателя при температуре 0-r-f-40 e C.

Источник: Смирнов А. Д., Радиолюбители — народному хозяйству. — 2-е изд., перераб. и доп. — М: Энергия, 1978. — 320 с., ил.— (Массовая радиобиблиотека; Вып. 957).

Особенности 4-х тактных лодочных моторов Ямаха

Очень долгое время, до последних нескольких лет, рынок лодочных моторов был наводнен только лишь 2-х тактными моторами. И это касается не только Ямаха (Yamaha). У них небольшой вес, небольшие размеры и простота конструкции. Эффективность при всех этих плюсах также на высоте. Но требования по безопасности окружающей среды, а в особенности с американской стороны внесли свои коррективы в рынок. В США и в Европе любители активного отдыха на воде все чаще и чаще отдают предпочтения 4-х тактным лодочным моторам и чаще всего это Ямаха. У них более чистый выхлоп, КПД также выше чем у 2-х тактных моторов и по шумовым характеристикам они опережают своих “менее тактных” собратьев.

Четырехтактные лодочные моторы в конструкции имеют клапанный механизм, который управляет впускным и выпускным каналами. За два оборота вала зажигание происходит лишь один раз. Такие моторы в большинстве своем весят больше и размеры у них больше чем у их двухтактных аналогов. 4-х тактные лодочные моторы Ямаха обладают компактными размерами и отличаются высокими техническими характеристиками с постоянным внедрением всех новых разработок в области моторостроения.

Инженеры Ямаха (Yamaha) в последнее время нацелены на объединение малой массы, компактности и высокой надежности 2-х тактных моторов с экономичностью, плавностью и экологичностью современных 4-х тактных. Новый модельный ряд 4-хтактных моторов Ямаха снабжен электронной системой зажигания (CDI), системой электронного впрыска (EFI), имеет новаторскую компоновку самого двигателя. Система воздухозабора и выпуска полностью переработана и теперь отвечает всем современным стандартам и требованиям. Кроме того, на этой линейке моторов применяется новая система впрыска с изменяемым углом опережения зажигания (VCT). Все это работает под контролем блока электронного управления, который полностью контролирует каждый участок в работе двигателя, от топливной смеси и ее состава в каждый конкретный момент времени до самого эффективного способа ее сжигания. Не зря же 4-х тактному лодочному мотору ямаха принадлежит мировой рекорд по экономичности.

Успех 4-х тактных лодочных моторов Ямаха обусловлен еще и тем, что разработка их не заключалась в переделке уже существующих автомобильных двигателей, а в разработке мотора с нуля именно для использования в водной среде.

Технические особенности 4-х тактных лодочных моторов Ямаха

Электронная система зажигания CDI. Система транзисторно-катушечного зажигания (TCI)

Системы CDI и TCI состоят из твердотельных компонентов и в них абсолютно отсутствуют подвижные части. Благодаря этому пуск мотора в любых температурных условиях происходит быстро. Мотор работает тихо, стабильно, надежно и безотказно. Также эти системы не требуют какого либо обслуживания в течении всего срока службы мотора Ямаха.

Система быстрого изменения угла наклона мотора

При движении по мелководью зачастую требуется изменить угол наклона мотора или вообще его поднять. Все четырехтактные Ямахи оборудованы такой системы. Она поможет защитить как мотор так и гребной винт от повреждений при столкновения с дном.

Мощные генераторы переменного тока

Генераторы, которые устанавливаются на эти моторы способны запустить его даже после очень продолжительного простоя. Также, генератор, способен длительное время поддерживать работу множества вспомогательных систем мотора, которые работают от электричества.

Защита от пуска на передаче

Стандартная система для всех 4-х тактных моторов Ямаха защищает от пуска, если мотор находится на передаче. Если это модель с ручным запуском, то стартер блокируется если рычаг переключения передач стоит не на нейтрали. Если мотор оборудован электростартером, система разрывает цепь питания, если мотор стоит на передаче.

Предупредительная сигнализация для защиты мотора

Система контролирует все критические параметры мотора Yamaha. Сюда включены: уровень масла, температура двигателя, обороты мотора. В качестве сигнализации о внештатной работе мотора выступают лампы на корпусе мотора и предупредительная звуковая сигнализация. В случае обнаружения нештатной работы, система в автоматическом режиме снижает обороты мотора с подачей необходимого сигнала. Даже в неисправном состоянии вы можете спокойно довести вашу лодку до места стоянки, где уже диагностировать более точно неисправность и в итоге устранить ее.

Система промывки мотора пресной водой

Все 4-х тактники от Ямаха мощностью свыше 6 л.с. оснащаются такой системой. Для промывки мотора достаточно подсоединить шланг с пресной водой к расположенному впереди штуцеру и вымыть всю грязь и соль, которая скопилась там за время эксплуатации. Такие промывки значительно снижают риск образования коррозии и продлевают срок службы. Эта процедура не требует запуска самого мотора.

Электронный блок управления (ECM)

Блок управления ECM это сложная система на базе микрокомпьютера, которая управляет всеми функциями мотора от фаз зажигания до системы активной защиты мотора. Блок управления работает постоянно и в режиме реального времени отслеживает все показатели всех систем мотора. Это “мозг” лодочного мотора Ямаха.

Защитное покрытие от коррозии

На основе многолетнего опыта инженеров компании Yamaha было разработано защитное покрытие, которое практически на 100% защищает мотор от вредного воздействия окружающей среды.