Это передачи между валами с пересекающимися осями

Конические зубчатые передачи. Классификация, термины и определения

Классификация зубчатых передач

Классификация зубчатых передач

Классификация пространственных зубчатых передач

Классификация пространственных зубчатых передач

Классификация Конических зубчатых передач

Классификация Конических зубчатых передач

Классификация Конических зубчатых передач

Коническая зубчатая передача относится к классу Пространственных зубчатых передач, которые применяются для передачи вращения между валами, оси которых пересекаются или скрещиваются. К ним относятся, также: смешанные конические передачи, гиперболические передачи, винтовые передачи, гипоидные передачи, червячные передачи, спироидные передачи.

Коническая зубчатая передача осуществляет передачи между валами с пересекающимися осями, у зубчатых колёс которых аксоидные начальные и делительные поверхности конические. В конической передаче начальные поверхности совпадают с аксоидами. Линии зубьев конической передачи могут быть прямыми, тангенциальными, круговыми наклонными, круговыми «зерол», паллоидными. Вершины конусов пары конических зубчатых колес должны совпадать с точкой пересечения их осей.

Коническая передача (рис. 2.1) состоит из шестерни 1, имеющей меньшее число зубьев z1 и колеса 2 с большим числом зубьев z2, относительное движение которых можно представить как качение без скольжения друг по другу их начальных конусов (аксоидов). Линии пересечения начальных конусов и боковых поверхностей зубьев называют линиями зубьев.

Прямозубая коническая передача

Прямозубая коническая передача. Дифференциал

Оси конических колес прямозубой зубчатой передачи составляют прямой угол, и их зубья обычно нарезаются по радиусам. Прямозубые конические колёса применяют при невысоких окружных скоростях (до 2. 3 м/с, допустимо до 8 м/с). Прямозубые конические передачи обеспечивают передаточное отношение до 3.

Тангенциальная коническая передача

Если зубья конических колес прямые, но идут не по радиусам, то они называются тангенциальными и могут работать с окружной скоростью до 12 м/с.

Конические передачи с криволинейными зубьями

Конические колеса с криволинейными зубьями бывают трех разновидностей:

  1. Коническое зубчатое колесо с круговыми зубьями, нарезанными по окружности, линии зубьев которых имеют вид дуги окружности с углом наклона β n > 0 (этот угол называют углом спирали);
  2. Коническое зубчатое колесо с эвольвентной линией зубьев — зубчатое колесо, теоретическими линиями зубьев которого на развертке делительного конуса являются эвольвенты концентрической окружности (Паллоидные);
  3. Коническое зубчатое колесо с циклоидальной линией зубьев — зубчатое колесо, теоретическими линиями зубьев которого на развертке делительного конуса являются циклоидальные кривые.

Коническое зубчатое колесо с круговыми зубьями, у которого угол наклона зубьев (угол спирали) в одной из точек делительной средней линии зуба равен нулю называют, также, коническое зубчатое колесо с нулевым углом наклона зубьев или «Зерол».

Различают конические зубчатые колеса с внешним нулевым, средним нулевым и внутренним нулевым углом наклона круговых зубьев, у которых соответственно равны нулю внешний делительный, средний делительный и внутренний делительный углы наклона средней линии зуба конического зубчатого колеса с круговыми зубьями.

Конические зубчатые колёса с криволинейными зубьями обеспечивают более плавное зацепление, меньший шум, большую несущую способность и окружную скорость — до 35-40 м/с.

Благодаря наклону и бочкообразной форме зубьев конические колеса с круговым зубом, более прочны, бесшумны и допускают большие отклонения при монтаже, чем прямозубые.

Конические передачи с круговыми зубьями имеют в зацеплении одновременно не менее двух зубьев, обеспечивая за счет формы зуба непрерывный контакт, бесшумность и плавность даже при высоких скоростях вращения. При этом передаваемые мощности на 30 % больше, чем у прямозубых конических колес.

Колеса типа Зерол, как и прямозубые конические колеса, работают с минимальными осевыми нагрузками. Они легко шлифуются после термообработки, благодаря чему достигается высокая точность. Поэтому колеса типа Зерол применяют в высокоскоростных передачах (с окружной скоростью более 76 м/с), используемых в авиастроении. Их можно устанавливать также в приводах, где ранее применялись прямозубые колеса.

Гипоидные зубчатые передачи

Гипоидные зубчатые передачи

Гипоидные зубчатые передачи

Гипоидные колеса за счет увеличения угла наклона зубьев β n и коэффициента перекрытия работают более плавно и бесшумно, чем передачи с круговыми зубьями. Они широко применяются в автомобилестроении, так как благодаря смещению осей шестерни и колеса дают возможность конструировать низко опущенные кузова автомобилей.

Гипоидная зубчатая передача: 1 — ведомая шестерня, 2 — ведущая шестерня Гипоидная передача (гиперболоидная) — вид винтовой зубчатой передачи, осуществляемой коническими колёсами (с косыми или криволинейными зубьями) со скрещивающимися осями (обычно 90°). Гипоидная передача имеет смещение по оси между большим и малым зубчатыми колесами. Данный тип передачи характеризуется повышенной нагрузочной способностью, плавностью хода и бесшумностью работы. Часто используется как главная передача в приводах ведущих колёс автомобилей, сельскохозяйственной техники, а также в качестве привода в станках и прочих индустриальных машинах для обеспечения высокой точности при большом передаточном числе.

Отличается от спиральной тем, что ось ведущей шестерни смещена относительно оси ведомого колеса на величину гипоидного смещения.

Спироидные зубчатые передачи

Спироидные зубчатые передачи

Спироидные зубчатые передачи — это гипоидные зубчатые передачи, в которых начальные поверхности зубчатых колёс конические, шестерни имеют винтовые зубья, а зубчатые колеса имеют сопряженные поверхности зубьев с линейным контактом, если производящая поверхность для одного из них совпадает с главной поверхностью зубьев первого зубчатого колеса. По форме поверхности вершин витков червяка и способу его расположения относительно межосевой линии их разделяют на три вида: цилиндрические спироидные передачи, традиционно конусные наружного зацепления, обратноконусные внутреннего зацепления (рис. 8).

Типы станков для обработки конических колес

Колёса с прямыми зубьями обрабатывают, обычно, на зубодолбежных или зубострогальных станкахпо методу обкатки одним или чаще двумя резцами. На этих станках воспроизводится зацепление нарезаемого зубчатого колеса с воображаемым плоским производящим зубчатым колесом; при этом два зуба последнего представляют собой зубострогальные резцы, совершающие возвратно-поступательное движение, боковые поверхности каждого из зубьев нарезаемого зубчатого колеса формируются в результате движения резцов и обработки находящихся в зацеплении плоского и нарезаемого зубчатых колёс. Процесс нарезания зубьев происходит при движении резцов к вершине конуса заготовки, а обратный ход является холостым (в этот период резцы отводятся от заготовки).

Пример зубострогальных станков:

Конические зубчатые колёса с круговыми зубьями нарезаются на зуборезных станках методом обкатки с применением зуборезной резцовой головки, представляющей собой диск с вставленными по его периферии резцами, обрабатывающими профиль зуба с двух сторон (первая половина резцов обрабатывает одну сторону, вторая половина — другую).

Пример зуборезных станков:

Точность зубчатых колес и методы зубонарезания

Для зубчатых цилиндрических колес по ГОСТ 1643-81 Основные нормы взаимозаменяемости. Передачи зубчатые цилиндрические. Допуски установлено 12 степеней точности: с 1-й по 12-ю. Чем меньше степень, тем точнее колесо. Степени точности 1-я, 2-я и 12-я пока не регламентированы.

Для каждой степени точности установлены нормы кинематической точности, плавности зацепления и контакта зубьев.

Нормы кинематической точности определяют величину наибольшей погрешности угла поворота зубчатых колес в зацеплении за один оборот. Эта погрешность возникает при нарезании зубчатых колес за счет погрешностей взаимного расположения заготовки и режущего инструмента, а также кинематической погрешности станка. Показателями погрешности кинематической точности являются: накопленная погрешность окружного шага и колебание длины общей нормали.

Нормы плавности зацепления колеса определяют величину составляющей полной погрешности угла поворота колеса, многократно повторяющуюся за один поворот колеса. Показателями плавности являются: циклическая погрешность (средняя величина размаха колебаний кинематической погрешности за цикл), предельные отклонения основного шага и погрешность профиля.

Нормы контакта зубьев определяют точность выполнения сопряженных зубьев в передаче в зависимости от относительных размеров пятна контакта в процентах по длине и высоте зуба.

Точность каждой степени характеризуется числовыми нормами по элементам сопряжения.

Устанавливается также величина наименьшего бокового зазора между зубьями и допуск на него.

Боковым зазором называется зазор между зубьями сопряженных колес в передаче, обеспечивающий свободный поворот одного колеса относительно другого. Для передач установлено четыре вида сопряжений с гарантированным зазором: С — с нулевым, Д — с пониженным, X — с нормальным и Ш — с повышенным.

Нормы бокового зазора назначают в соответствии с эксплуатационными требованиями передачи и не зависят от норм точности.

Условное обозначение норм точности зубчатых колес состоит из четырех знаков: первые три означают степень точности в порядке их перечисления, а четвертый характеризует сочетание по боковому зазору. Например: 7-8-8-X.

Это передачи между валами с пересекающимися осями

34. Зубчатые передачи. Достоинства и недостатки. Основные виды зубчатых передач. Основные параметры зубчатых колес. Передаточное число. Материалы и обработка.

Зубчатая передача — это механизм, который с помощью зуб­чатого зацепления передает или преобразует движение с изме­нением скоростей и моментов.

Цилиндрические зубчатые передачи между параллельны­ми валами выполняют с помощью колес с прямыми, косыми и шевронными зубьями . Конические передачи между валами с пересекающимися осями осуществляют коле­сами с прямыми и круговыми зубьями , реже ко­сыми (тангенциальными) зубьями. Преобразова­ние вращательного движения в поступательное и наоборот осу­ществляют цилиндрическим колесом и рейкой.

Зубчатые передачи — самые распространенные среди меха­нических передач. Годовой выпуск зубчатых колес составляет несколько миллионов. Диапазон их применения широк: от ча­сов и приборов до самых тяжелых машин.

Читайте также  86025749 вилка карданного вала в сборе

Достоинства зубчатых передач: малые габариты; высокий КПД; постоянство передаточного отношения из-за отсутствия проскальзывания; возможность применения в широком диа­пазоне вращающих моментов, скоростей и передаточных отно­шений; надежность в работе и простота обслуживания.

Недостатки зубчатых передач: высокие требования к точ­ности изготовления; шум при работе со значительными ско­ростями.

Начальная окружность — ;

— передаточное отношение;

— межосевое расстояние;

— модуль, он стандартизован;

— делительный диаметр;

— коэффициент ширины зубчатого венца, где b – ширина колеса.

Для косозубых передач водят угол наклона зубьев β , для конических углы конусности δ, причем δ1+ δ2=180º.

Еще вводят параметры: стандартный угол профиля, окружности все, коэфф. торцевого перекрытия, смещение, линия зацепления и активная линия зацепления, высота и толщина зуба, ну может, что еще придумаете.

При выборе материалов для зубчатых колес необходимо обес­печить сопротивление контактной усталости поверхностных слоев зубьев, прочность зубьев на изгиб, сопротивление заеда­нию и износу. Основными материалами являются термически обрабатываемые стали. Допускаемые контактные напряжения примерно пропорциональны твердости материа­лов. Это указывает на целесообразность широкого применения для зубчатых колес сталей, закаливаемых до значительной твердости.

Твердость Н материала измеряют по Бриннелю, когда Н R СЭ при Н > 350 НВ. Прибли­женно 10 НВ

1 Н R СЭ. При твердости Н

При твердости Н > 350 НВ химико-термическую обработку ведут после зубонарезания, при этом зубья коробятся и в ре­зультате ухудшаются их точностные показатели. В массовом и крупносерийном производстве применяют исключительно зубчатые колеса высокой твердости, которые подвергают отде­лочным операциям после термической обработки.

Объемная закалка вызывает увеличение твердости не толь­ко поверхности зуба, но и его сердцевины. В результате зуб становится хрупким и легко разрушается при ударах. По­этому объемная закалка уступила место поверхностным тер­мическим и химико-термическим методам упрочнений. Такой обработкой можно достигнуть высокой твердости поверхно­стных слоев материала зубьев при сохранении вязкой сердце­вины.

Для зубчатых колес применяют следующие основные виды поверхностных термических и химико-термических упрочне­ний: поверхностная закалка, цементация и нитроцементация с закалкой, азотирование.

Поверхностную закалку в основном обеспечивают за счет нагрева токами высокой частоты (ТВЧ). В связи с тем, что на­греваются поверхностные слои в течение 20. 50 с, толщина закаливаемого слоя мала и деформации при закалке невели­ки. Поэтому можно обойтись без последующего шлифования зубьев (однако это понижает точность на одну-полторы степе­ни). Материалы в этом случае — среднеуглеродистые легиро­ванные стали 40Х, 40ХН, 35ХМ и др. Обычно твердость на по­верхности зубьев (50. 55) Н R СЭ.

Поверхностная закалка зубьев без охвата переходной по­верхности (с обрывом твердого слоя у впадины зубьев) повы­шает износостойкость и сопротивление выкрашиванию, но по­нижает прочность при изгибе, так как создает концентратор напряжений у корня зуба. Желательно, чтобы закаленный слой повторял очертание впадин.

Цементация — поверхностное насыщение углеродом сталей, содержащих углерода менее 0,3%, с последующей закалкой. Цементация обеспечивает большую твердость (56. 63) Н R СЭ, несущую способность поверхностных слоев зубьев и высокую прочность на изгиб. Целесообразно при­менять газовую цементацию как более производительную. Применяют цементируемые стали: 20Х, а для ответственных зубчатых колес, работающих с ударными нагрузками, хро-моникелевые стали 12ХНЗА, 20ХНМ, безникелевые стали 18ХГТ, 25ХГТ и др. Толщина цементированного слоя при­мерно 0,3 модуля. Время цементации на глубину 1 мм при­мерно 3 часа — процесс длительный. При цементации рабо­чие поверхности зубьев искажаются и требуется их шлифо­вание.

Азотирование — насыщение поверхностных слоев азотом, обеспечивает высокую твердость (58. 65) Н R СЭ и износостой­кость поверхностных слоев. Азотируют готовые детали без по­следующей закалки. Для азотируемых колес применяют мо­либденовую сталь 38Х2МЮА, безалюминиевые стали типа 40ХФА, 40ХНА, 40Х. Зубья после азотирования в связи с ма­лой толщиной слоя насыщения и малым короблением не шли­фуют. Поэтому азотирование применяют для колес с внутрен­ними зубьями и других, шлифование которых трудно осу­ществимо. Недостатком азотированных колес является малая толщина упрочненного слоя (0,2. 0,5 мм), не позволяющая применять их при ударных нагрузках из-за опасности растрес­кивания упрочненного слоя и при работе с интенсивным изна­шиванием (при загрязненной смазке).

Нитроцементация — насыщение поверхностных слоев уг­леродом и азотом с последующей закалкой — обеспечивает им высокую прочность, износостойкость и сопротивление заеда­нию. Нитроцементация идет с достаточно высокой скоростью и в связи с малыми толщиной упрочняемого слоя и его дефор­мациями позволяет обойтись без последующего шлифования.

Улучшаемые стали применяют для зубчатых колес, преимущественно изготовляемых в условиях мелкосерийного и единичного производства при отсутствии жестких требова­ний к габаритам. Чистовое нарезание зубьев улучшаемых ко­лес производят после термической обработки заготовки, что исключает необходимость шлифования и позволяет обеспе­чить высокую точность. Применяют качественные углеродис­тые стали 40, 45 и легированные 35ХГС, 40Х и др.

Стали в нормализованном состоянии для обоих сопряженных зубчатых колес применяют только во вспомогательных механизмах, например в механизмах с руч­ным приводом. Основные материалы — среднеуглеродистые стали 40, 45, 50. Для повышения стойкости против заедания шестерни и колеса изготовляют из разных материалов.

Стальное литье применяют для колес больших диа­метров. Основные материалы — литейные среднеуглеродис­тые стали 35Л, 50Л и др. Литые колеса подвергают преимуще­ственно нормализации.

Ч у г у н ы используют для изготовления тихоходных, крупногабаритных и открытых передач. Кроме того, из чугуна изготовляют сменные колеса (поочередно работающие). При­меняют чугуны СЧ20. СЧ35, а также высокопрочные магние­вые чугуны с шаровидным графитом.

Пластмассовые зубчатые колеса в паре с ме­таллическими применяют в слабонагруженных передачах для обеспечения бесшумности, самосмазываемости или химиче­ской стойкости. Используют текстолит (рекомендуемые марки ПТ и ПТК) и древесно-слоистые пластики. Наиболее перспек­тивными следует считать капролон, полиформальдегид и фенилон.

ПОНЯТИЕ О ПЕРЕДАЧАХ

Передачей называется механизм, передающий вращательное движение от вала электродвигателя к валу рабочих органов. Передачи позволяют одновременно изменять частоту вращения

iwiAlt;i, направление движения и преобразовывать один вид движении и другой.

И механических передачах вал с закрепленными на нем деталями, передающими вращение, называется ведущим, а вал с деталями вращения — ведомым.

Нее механические передачи можно подразделить на зубчатые, ременные, червячные, цепные и фрикционные.

Зубчатая передача (рис. 1.1) — это механизм, состоящий из двух зубчатых колес, сцепленных между собой, либо из зубчатого колеса и рейки, червяка и червячного колеса. Такая передача получила широкое применение в передаточных механизмах машин.

В зависимости от конструкции и расположения зубчатых колес зубчатые передачи подразделяются на цилиндрические, конические и планетарные. По способу зацепления зубьев зубчатые передачи подразделяются на передачи с внешним и внутренним зацеплением.

Рис. 1.1. Зубчатые передачи:

прямозубая; б — косозубая; в — шевронная; г — коническая; д — с круго- иыми зубьями; е — с внутренним зацеплением

В зависимости от расположения зубьев колеса подразделяются на прямозубые, косозубые и шевронные. Для передачи сложного вращательного движения используется планетарный зубчатый механизм (рис, 1.2, а), в котором одно зубчатое колесо неподвижно, другое совершает двойное вращение: вокруг своей оси и вокруг оси неподвижного колеса. Этот вид передачи используется, например, во взбивальных машинах.

Червячная передача (рис. 1.2, б) — механизм, состоящий из винта со специальной резьбой (червяк) и зубчатого колеса с зубьями соответствующей формы.

Рис. 1.2. Передаточные механизмы:

а — планетарная передача: б — червячная передача; в — цепная передача; г — ременная передача; д — фрикционная передача; 1,9 — ведущие колеса; 2 — ведомое колесо; 3 — водило; 4 — вал с червяком; 5 — червячное колесо; 6, 6— звездочки; 7 — цепь; 10— ремень; 17 — шкив; 12 и 13 — гладкие ролики

Преимуществом данного типа передачи является большое передаточное число, что позволяет выиграть в силе. К недостаткам червячной передачи относятся сложность в изготовлении и необходимость в периодической смазке.

Цепная передача (рис. 1.2, в) состоит из двух закрепленных на валах зубчатых колес — звездочек и шарнирной гибкой цепи, которая надевается на звездочки и служит для передачи вращения. Эта передача применяется в механизмах и машинах, имеющих большое расстояние между валами и параллельное расположение их осей. Цепные передачи обеспечивают постоянное передаточное отношение и по сравнению с ременной передачей позволяют передавать большие мощности, кроме того, одной цепью можно приводить в движение несколько валов. К недостаткам цепной передачи можно отнести высокую стоимость обслуживания, сложность изготовления и шум в процессе работы. Цепные передачи используют на поточных линиях.

Ременная передача (рис. 1.2, г) осуществляется с помощью двух шкивов (колес), закрепленных на ведущем и ведомом валах, и надетого на эти шкивы ремня, Вращение от одного вала к другому передается посредством силы трения, возникающей между шкивом и ремнем.

Ремень в поперечном сечении может иметь форму прямоугольника (плоскоременная передача], трапеции (клиноременная передача, круга (круглоременная передача).

Читайте также  Escape подвесной подшипник карданного вала

Фрикционная передача (рис. 1.2, д) состоит из двух роликов (катков), насаженных на валы и прижатых один к другому. Вращение от ведущего цилиндра передается ведомому за счет силы трения.

При передаче вращения между параллельными валами применяются цилиндрические передачи, между пересекающимися валами — конические.

Фрикционные передачи просты по конструкции, бесшумны в работе и самопредохраняются от перегрузок, КПД — 80. 90%, однако имеют некоторые недостатки: непостоянное передаточное

число и повышенный износ цилиндров. Этот вид передачи применяют во взбивалъных машинах.

Кривошипно-шатунный механизм состоит из коленчатого вала, шатуна и поршня. При вращении коленчатого вала шатун заставляет поршень перемещаться возвратно-поступательно. Предназначен для преобразования вращательного движения в возвратно-поступательное движение рабочего инструмента. Этот механизм применяется в компрессорах холодильного оборудования.

Детали машин / Konspekty_lekcii / Конспекты лекций / Лекция 5. Зубчатые передачи

П л а н л е к ц и и

1. Общие сведения.

2. Классификация зубчатых передач.

3. Геометрические параметры зубчатых колес.

4. Точность преобразования параметров.

5. Динамические соотношения в зубчатых зацеплениях.

6. Конструкция колес. Материалы и допускаемые напряжения.

1. Общие сведения

Зубчатая передача – это механизм, который с помощью зубчатого зацепления передает или преобразует движение с изменением угловых скоростей и моментов. Зубчатая передача состоит из колес с зубьями, которые сцепляются между собой, образуя ряд последовательно работающих кулачковых механизмов.

Зубчатые передачи применяют для преобразования и передачи вращательного движения между валами с параллельными, пересекающимися или перекрещивающимися осями, а также для преобразования вращательного движения в поступательное и наоборот.

Достоинства зубчатых передач :

1. Постоянство передаточного отношения i .

2. Надежность и долговечность работы.

4. Большой диапазон передаваемых скоростей.

5. Небольшое давление на валы.

7. Простота обслуживания.

Недостатки зубчатых передач :

1. Необходимость высокой точности изготовления и монтажа.

2. Шум при работе со значительными скоростями.

3. Невозможность бесступенчатого регулирования передаточного отно-

2. Классификация зубчатых передач

Зубчатые передачи, применяемые в механических системах, разнообразны. Они используются как для понижения, так и для повышения угловой скорости.

Классификация конструкций зубчатых преобразователей группирует передачи по трем признакам:

1 . По виду зацепления зубьев . В технических устройствах применяются передачи с внешним (рис. 5.1, а ), с внутренним (рис. 5.1, б ) и с реечным (рис. 5.1, в ) зацеплением.

Передачи с внешним зацеплением применяются для преобразования вращательного движения с изменением направления движения. Передаточное отношение колеблется в пределах –0,1 i –10. Внутреннее зацепление применяется в том случае, если требуется преобразовывать вращательное движение с сохранением направления. По сравнению с внешним зацеплением передача имеет меньшие габаритные размеры, бóльший коэффициент перекрытия и повышенную прочность, но более cложна в изготовлении. Реечное зацепление применяется при преобразовании вращательного движения в поступательное и обратно.

2 . По взаимному расположению осей валов различают передачи цилиндрическими колесами с параллельными осями валов (рис. 5.1, а ), коническими колесами с пересекающимися осями (рис. 5.2), колесами со скрещивающимися осями (рис. 5.3). Передачи c коническими колесами обладают меньшим передаточным отношением (1/6 i 6), более сложны в изготовлении и эксплуатации, имеют дополнительные осевые нагрузки. Винтовые колеса работают с повышенным скольжением, быстрее изнашиваются, имеют малую нагрузочную способность. Эти передачи могут обеспечивать различные передаточные отношения при одинаковых диаметрах колес.

3 . По расположению зубьев относительно образующей обода колеса

различают передачи прямозубые (рис. 5.4, а ), косозубые (рис. 5.4, б ), шевронные (рис. 5.5) и с круговыми зубьями.

Косозубые передачи имеют боль-

шую плавность зацепления, меньше

прямозубым, но в передаче возникают

Сдвоенная косозубая со

наклонами зубьев (шевронная) переда-

ча имеет все преимущества косозубой

и уравновешенные осевые силы. Но

передача несколько сложнее в изготов-

лении и монтаже. Криволинейные

зубья чаще всего применяются в кони-

работы при высоких скоростях.

3. Геометрические параметры зубчатых колес

К основным геометрическим параметрам зубчатых колес (рис. 5.6) относятся: шаг зуба Р t , модуль m ( m = P t / ), число зубьев Z , диаметр d делительной окружности, высота h a делительной головки зуба, высота h f делительной ножки зуба, диаметры d a и d f окружностей вершин и впадин, ширина зубчатого венца b .

Диаметр делительной окружности d = mZ . Делительной окружностью зуб колеса делится на делительную головку и делительную ножку, соотношение размеров которых определяется относительным положением заготовки колеса и инструмента в процессе нарезания зубьев.

При нулевом смещении исходного контура высота делительной головки и ножки зуба колеса соответствует таковым у исходного контура, т. е.

h a = h a * m ; h f = ( h a * + c * ) m ,

где h a * – коэффициент высоты головки зуба; c * – коэффициент радиального

Для колес с внешними зубьями диаметр окружности вершин

d a = d + 2 h a = ( Z + 2 h a * ) m.

Диаметр окружности впадин

d f = d – 2 h f = ( Z – 2 h a * – 2 c * ) m.

При m ≥ 1 мм h a * = 1, c * = 0,25, d a = ( Z – 2,5) m .

Для колес с внутренними зубьями диаметры окружностей вершин и впадин следующие:

d a = d – 2 h a = ( Z – 2 h a * ) m ;

d f = d + 2 h f = ( Z + 2 h a * + 2 c * ) m.

Для колес, нарезанных со смещением, диаметры вершин и впадин определяются с учетом величины коэффициента смещения по более сложным зависимостям.

Если два колеса, нарезанные без смещения, ввести в зацепление, то их делительные окружности будут касаться, т. е. совпадут с начальными окружностями. Угол зацепления при этом будет равен углу профиля исходного контура, т. е. начальные ножки и головки совпадут с делительными ножками и головками. Межосевое расстояние будет равняться делительному межосевому расстоянию, определяемому через диаметры делительных окружностей:

a w = a = ( d 1 + d 2 )/2 = m ( Z 1 + Z 2 )/2.

Для колес, нарезанных со смещением, имеется различие для начальных и делительных диаметров, т. е.

d w 1 ≠ d 1 ; d w 2 ≠ d 2 ; a w ≠ a ; α w = α.

4. Точность преобразования параметров

В процессе эксплуатации зубчатой передачи теоретически постоянное передаточное отношение претерпевает непрерывные изменения. Эти изменения вызываются неизбежными погрешностями изготовления размеров и формы зубьев. Проблема изготовления зубчатых зацеплений с малой чувствительностью к погрешностям решается в двух направлениях:

а) применение специальных видов профилей (например, часовое зацепление);

б) ограничение погрешностей изготовления.

В отличие от таких простых деталей, как валы и втулки, зубчатые колеса являются сложными деталями, и погрешности выполнения их отдельных элементов не только сказываются на сопряжении двух отдельных зубьев, но и оказывают влияние на динамические и прочностные характеристики зубчатой передачи в целом, а также на точность передачи и преобразования вращательного движения.

Погрешности зубчатых колес и передач в зависимости от их влияния на эксплуатационные показатели передачи можно разделить на четыре группы:

1) погрешности, влияющие на кинематическую точность, т. е. точность передачи и преобразования вращательного движения;

2) погрешности, влияющие на плавность работы зубчатой передачи;

3) погрешности пятна контакта зубьев;

4) погрешности, приводящие к изменению бокового зазора и влияющие на мертвый ход передачи.

В каждой из этих групп могут быть выделены комплексные погрешности, наиболее полно характеризующие данную группу, и поэлементные, частично характеризующие эксплуатационные показатели передачи.

Такое разделение погрешностей на группы положено в основу стандартов на допуски и отклонения зубчатых передач: ГОСТ 1643–81 и ГОСТ 9178–81.

Для оценки кинематической точности передачи, плавности вращения, характеристики контакта зубьев и мертвого хода в рассматриваемых стандартах установлено 12 степеней точности изготовления зубчатых колес

и передач. Степени точности в порядке убывания обозначаются числами 1–12. Степени точности 1 и 2 по ГОСТ 1643–81 для m > 1 мм и по ГОСТ 9178–81 для 0,1 m P тр , подводимой к входу преобразователя, расходуется на преодоление трения качения и скольжения в кинематических парах зубчатых колес. В результате мощность на выходе уменьшается. Для оценки потери

мощности используется понятие коэффициента полезного действия (КПД), определяемого как отношение мощности на выходе преобразователя к мощности, подводимой к его входу, т. е.

Если зубчатая передача преобразует вращательное движение, то соответственно мощности на входе и выходе можно определить как

P вх = ω вх T вх ; P вых = ω вых T вых ,

где ω вх , ω вых – угловые скорости на входе и выходе; T вх , T вых – крутящие

моменты на входе и выходе.

Подставив значения из выражения (5.2) в формулу (5.1), получим

η = (ω вых /ω вх )( Т вых / Т вх ).

Обозначим ω вых /ω вх через i , а величину T вых / T вх через i м , которое назовем передаточным отношением моментов. Тогда выражение (5.3) примет вид

Величина η колеблется в пределах 0,94–0,96 и зависит от типа передачи и передаваемой нагрузки.

Для зубчатой цилиндрической передачи КПД можно определить из зависимости

η = 1 – cf π(1/ Z 1 + 1/ Z 2 ),

где с – поправочный коэффициент, учитывающий уменьшение КПД с уменьшением передаваемой мощности;

Лекции по дисциплине «Оборудование предприятий общественного питания» для специальностей 260502 и 260807 « Технология продукции общественного питания» (стр. 3 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Рабочие органы — это узлы и детали машин, непосредственно воз­действующие на продукты питания в процессе их обработки.

Передаточный механизм — передает движение от вала двигателя к ра­бочему органу машины, одновременно обеспечивая требуемые скорость и направление движения. Как правило в качестве двигателя машины ис­пользуется электродвигатель

Понятие о передачах

Читайте также  53 1005034 сальник передний коленчатого вала

Передачей называется механическое устройство, передающее враща­тельное движение от вала электродвигателя к валу рабочих органов. Од­новременно передачи позволяют изменять скорость вращения вала, направление движения на противоположное и преобразовывать один вид движения в другой.

В механических передачах вал с закупленными на нем деталями, передаю­щими вращение, называется ведущим, а вал с деталями вращения — ведомым.

Все механические передачи можно разделить на ременные, зубчатые, червячные, цепные и фрикционные.

Зубчатые передачи это механизм, состоящий из 2-х зубчатых колес, сцепленных между собой. Эти передачи получили ши­рокое применение в передаточных механизмах машин.

В зависимости от конструкции и расположения зубчатых колес, зуб­чатые передачи подразделяются на цилиндрические, конические и пла­нетарные. По способу зацепления зубьев, зубчатые передачи делятся на передачи с внешним и внутренним зацеплением.

В зависимости от расположения зубьев, колеса подразделяются на плоскозубые, косозубые и шевронные. Для передачи сложного враща­тельного движения используется планетарный зубчатый механизм (рис. 1-2пап), при котором одно зубчатое колесо неподвижно, другое совер­шает двойное вращение: вокруг своей оси и вокруг оси неподвижного колеса (взбивальная машина).

Ременная передача — осуществляется при помощи двух шкивов, закрепленных на ведущем и ведомом валах, и надетого на эти шкивы ремня. Вращение от одного вала к другому передается посредством трения, возникшего между шкивом и ремнем.

Ремень в поперечном сечении может иметь форму прямоугольника — плоско ременная передача, трапеции — клиноременная передача, круга — круглоременная передача. Ремни выполняются из кожи или хлопчатобу­мажной и прорезиненной ткани. Нормальная работа зависит от правильно­го натяжения ремня. Ременная передача бесшумна в работе, проста по конструкции и предохраняет машину от поломки в случае заклинивания, так как ремень будет пробуксовывать. На предприятиях общественного питания широкое применение получила клиноременная передача, применяемая в картофелечистках, мясорубках, холодильных агрегатах и т. д.

Червячная передача применяется для передачи движения между валами с пересекающимися осями. Состоит она из винта со специальной резьбой (червяк) и зубчатого колеса с зубьями соответствующей формы. Эти передачи компактны, бесшумны и значительно снижают скорость вращения вала.

Цепная передачи состоит из 2-х закрепляемых на валах звездочек и шарнирной гибкой цепи, которая надевается на звездочки и служит для их связи. Эти передачи применяются в механизмах и машинах при больших расстояниях между валами и параллельном расположении их осей. Цепные передачи обеспечивают постоянное передаточное отношение и по сравнению с ременной передачей позволяют передавать большие мощности, кроме того, одной цепью можно приводить в движение нескольких валов. К недостаткам цепной передачи можно отнести высокую стоимость обслуживания, сложность изготовления и шума в процессе работы.

Фрикционная пере­дача состоит из 2-х катков, насаженных на валы и прижатых один к дру­гому. Вращение от ве­дущего катка перелает­ся ведомому за счет силы трения.

При передаче враще­ния между параллель­ными валами применя­ются цилиндрические передачи, между пере­секающимися валами — конические.

Эти передачи про­сты по конструкции, бесшумны в работе и самопредохраняются от перегрузок, однако имеют некоторые не­достатки: низкий КПД — 80-90%, непостоян­ное передаточное чис­ло и повышенный износ катков.

Кривошипно-шатунный механизм предназначен для преобразования вращательного движения в возвратно-поступательное движение рабоче­го инструмента. Он состоит из коленчатого вала, шатуна и поршня. При вращении коленчатого вала, шатун вставляет поршень перемещаться возвратно-поступательно. Этот механизм применяется в компрессорах холодильного оборудования.

Понятие об электроприводах

Электроприводом называется машинное устройство, используемое для приведения в движение машины. Он состоит из электрического двигате­ля, передаточного механизма и пульта управления. На предприятиях об­щественного питания наибольшее распространение имеют двигатели, рас­считанные на напряжение 380/220 В. Это значит, что один и тот же двигатель может работать от сети переменного тока с частотой 50 Гц и с на­пряжением 380 или 220 В, следует только правильно соединить обмотки его статора. Соединяя их «треугольником», двигатель подключают к сети напряжением 220 В, соединяя »звездой, к сети напряжением 380 В.

Широкое применение получили универсальные приводы, которые могут поочередно приводить в движение различные устанавливаемые сменные рабочие механизмы — фаршемешалка, мясорубка, взбивали и т. д. Применение универсальных приводов в столовых очень выгодно. Объясняется это тем, что сменные рабочие машины работают в столо­вых не более часа и поэтому имеют очень малый коэффициент исполь­зования. В таких случаях устанавливать электропривод к каждой маши­не нецелесообразно из-за увеличения ее стоимости и занимаемой пло­шали. В настоящее время промышленность выпускает универсальные приводы 2-х видов: общего назначения, которые используются в не­скольких цехах, и специального назначения, которые используются только в одном цехе, например, в мясном. К универсальным привалам общего назначения относятся и универсальные малогабаритные приво­ды УММ-ПР с электродвигателем переменного тока, УММ-ПС с элек­тродвигателем постоянного тока, которые используют на транспорте (судах и вагонах-ресторанах). Все универсальные приводы имеют бук­венные обозначения. Первая буква П обозначает привод, вторая — на­звание цеха: М — мясной, X — холодный, Г — горячий, У — универ­сальный, для холодного цеха ПХ-0,6, для горячего цеха ПГ-0,6 и для мясного цеха ПМ-1,1. На приводы общего назначения: ПУ-0,6 и П-11 устанавливаются сменные механизмы, которые имеют буквенные обо­значения: первая буква М — механизм сменный, вторая М — мясоруб­ка, В — механизм взбивальный, О — механизм овощерезательный.

На предприятиях обществе иного питания наряду с машинами пред­назначенными для выполнения одной какой-либо операции применя­ются универсальные приводы с набором сменных механизмов, выполняющих целый ряд операций по обработке продуктов.

Универсальные приводы используют преимущественно в небольших предприятиях общественного питания, в мясных, овощных и кондитер­ских цехах.

Универсальным приводом называется устройство состоящее из элек­тродвигателя с редуктором и имеющее приспособление для переменно­го подсоединения различных сменных механизмов. Он состоит из элек­тродвигателя с редуктором, на котором могут закрепляться и попере­менно работать различные по назначению съемные механизмы: мясо­рубка, взбивалка, овощерезка, мясорыхлитель и другие машины. Отсю­да привод получил свое название — «универсальный».

Применение универсальных приводов значительно увеличивает про­изводительность труда, снижает капитальные затраты, увеличивает ко­эффициент полезного действия оборудования и т. д.

В настоящее время промышленность выпускает универсальные приво­ды П-11 и ПУ-0.6 для различных цехов, а также приводы специального назначения П-1,1 для сравнительно небольшого ассортимента продукта.

Для работы в небольших столовых, а также в камбузах речных и мор­ских судов используются универсальные малогабаритные привады УММ-ПС иди УММ-ПР. Источником энергии этих приводов макет быть переменный (ПР) или постоянный (ПС) ток.

Универсальный привод общего назначения ПУ-0,6 выпускается двухскоростным с частотой вращения вала 170 и 1400 об/мин и односкоро­стным с частотой вращения 170 об/мин и мощностью двигателя 0,6 кВт. Он имеет комплект сменных механизмов (табл. 1), которые могут ис­пользоваться на небольших предприятиях, где отсутствует цеховое. деле­ние приготовления продушин.

На больших предприятиях общественного питания, где имеется цехо­вое деление, используют специализированные универсальные приводы:

— Привод ПМ-1.1 специализированный для мясо-рыбного цеха выпу­скается в односкоростном или двухскоростном варианте, с частотой вращения вала 170 или 1400 об/мин и мощностью двигателя 1,1 кВт. Он имеет комплект сменных исполнительных механизмов, которые могут быть использованы только в мясо-рыбных цехах предприятий.

— Привод ПХ-0,6 специализированный для холодных цехов. Сос­тоит из односкоростного привода П-0,6 и комплекта сменных исполнительных механизмов, которые могут быть использованы в холодных цехах.

— Привод ПГ-0,6 специализированный для горячих цехов, состоит из полноскоростного привода П-0,6 и комплекта сменных исполнитель­ных механизмов, которые могут быть использованы в горячих цехах.

— Привод П-П универсальный состоит из двухступенчатого зубчатого редуктора, двухскоростного двигателя. Частота враще­ния приводного вала привода составляет ПО и 330 об/мин. На гор­ловине привода расположена рукоятка с кулачком для крепления сменных исполнительных механизмов. Переключатель скоростей электродвигателя, пусковая кнопка и кнопка возврата гешевого реле смонтированы на пульте управления.

Все выпускаемые приводы и сменные механизмы к ним имеют бук­венные и цифровые обозначения.

Буква П — обозначает слово привод, У — универсальный, М — мяс­ной цех, X — холодный цех, Г — горячий цех. Цифры, следующие за бу­квенными обозначениями, указывают на номинальную мощность элек­тродвигателя привода в киловаттах.

Сменные механизмы (МО. комплектуемые к универсальному или спе­циализированным приводам, имеют определенный порядковый номер.

Номер 2 — мясорубка, 3 — соковыжималка, 4 — взбивалка, 5 — кар­тофелечистка, 6 — мороженница, 7 — протирочный механизм, 8 — фар­шемешалка, 9 — куттер, 10 — овощерезка, 11 — тележка или подставка для привода, 12 — размолочный механизм, 13 — приспособление для чистки ножей и вилок, 14 — колбасорезка, 15 — косторезка, 16 — точи­ло, 17 — рыбоочиститель, IS — механизм для фигурной нарезки овощей, 19 — рыхлитель мяса, 20 — механизм для взбивания, 21 — котлетоформовочный механизм, 22 — механизм для нарезки вареных овощей, 24 — просеиватель, 25 — механизм для перемешивания салатов и винегре­тов, 27 — механизм для нарезки свежих овощей, 28 — механизм для на­резки сырых овощей брусочками.