Шпонпаз от диаметра вала

4.1.2 Посадки шпонок и рекомендации по выбору полей допусков

Основным посадочным размером является ширина шпонки b. По этому размеру шпонка сопрягается с двумя пазами: пазом на валу и пазом во втулке.

Шпонки обычно соединяются с пазами валов неподвижно, а с пазами; втулок – с зазором. Натяг необходим для того, чтобы шпонки не перемещались при эксплуатации, а зазор – для компенсации неточности размеров и взаимного расположения пазов. Шпонки вне зависимости от посадок изготавливаются по размеру b с допуском h9, что делает возможным их централизованное изготовление. Остальные размеры менее ответственны: высота шпонки h – по h11, длина шпонки l – по h14, длина паза под шпонку L – по H15.

Схемы расположения полей допусков для соединений с призматическими и сегментными шпонками приведены на рисунке 4.5.

а) б) в)

Рисунок 4.5 – Схемы расположения полей допусков на размер b шпоночного соединения:

а – свободное; б – нормальное; в – плотное; – допуск шпонки; – допуск паза вала; – допуск паза втулки

Посадки шпонок осуществляются по системе вала (Сh). Стандартом допускаются различные сочетания полей допусков для пазов на валу и во втулке с полем допуска шпонки по ширине.

Выбор полей допусков рекомендуется выполнять по таблице 4.2.

Наибольшее распространение имеет нормальное соединение, когда втулка (зубчатое колесо) расположена по середине вала.

Свободное соединение применяется для направляющих шпонок (зубчатое колесо перемещается вдоль вала).

Плотное соединение используется в случае реверсивного вращения вала или при расположении шпонки на конце вала.

4.1.3. Требования к оформлению шпоночных соединений

Предельные отклонения размеров для выбранных полей допусков следует определять по таблицам ГОСТ 25347 или по таблицам 1.1, 1.2 и 1.3 данного пособия. Примеры оформления шпоночного соединения на сборочном чертеже, поперечных сечений вала и втулки, участвующих в соединении с призматической шпонкой, представлены на рисунках 4.6 и 4.7.

1 – втулка; 2 – шпонка; 3 – вал

Рисунок 4.6 – Выполнение шпоночного соединения:

а – поперечное сечение в сборе; б – сечение шпонки

При выполнении поперечного сечения шпоночного соединения необходимо указать посадки, а у шпонки — поля допусков на размеры b и h шпонки в смешанном виде и шероховатости поверхностей. На чертежах поперечных сечений вала и втулки необходимо указать шероховатости поверхностей, поля допусков на размеры b, d и D в смешанном виде, а также следует нормировать размеры глубины пазов: на валу t1 – предпочтительный вариант или (dt1) с отрицательным отклонением и во втулке (d + t2) предпочтительный вариант или ь с положительным отклонением. В обоих случаях отклонения выбираются в зависимости от высоты шпонки h (см. таблицу 4.1). Кроме этого, на чертежах поперечных сечений вала и втулки необходимо ограничивать допусками точность формы и взаимного расположения поверхностей. Предъявляются требования по допустимым отклонениям от симметричности шпоночных пазов и параллельности плоскости симметрии паза относительно оси детали (базы). Допуск параллельности следует принимать равным 0,5IT9, допуск симметричности при наличии в соединении одной шпонки – 2IT9, а при двух шпонках, расположенных диаметрально, – 0,5IT9 от номинального размера b шпонки. Допуски симметричности могут быть зависимыми в крупносерийном и массовом производстве.

Рисунок 4.7 – Поперечные сечения:

а – вала, шпоночный паз исполнения 2; б – втулки

Таблица 4.2 – Рекомендации по выбору полей допусков по ширине шпонки b

Соединения шпоночные

размеры сечений пазов и их предельные отклонения

ШПОНКИ ПРИЗМАТИЧЕСКИЕ
( ГОСТ 23360-78 )

Данный ГОСТ 23360-78 соответствует DIN 6885 в диапазоне диаметров 6-130 мм

Описание распространяется на шпоночные соединения с призматическими шпонками и устанавливает размеры и предельные отклонения размеров призматических шпонок и соответствующих им шпоночных пазов на валах и во втулках.

Размеры сечений пазов

Размеры шпонок в зависимости от диаметра вала

Варианты исполнения шпонок

Ряд длин шпонок: 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200, 220, 250, 280, 320, 360, 400, 450, 500

УСЛОВНОЕ ОБОЗНАЧЕНИЕ

шпонка исполнения 1: Шпонка BxHxL ГОСТ 23360-78.
шпонка исполнения 2: Шпонка 2-BxHxL ГОСТ 23360-78.

Материал шпонок — сталь чисто тянутая для шпонок по ГОСТ 8787-68. Допускается применять другую сталь с временным сопротивлением разрыву не менее 590 МПа (60 кг/мм 2 ).

Предельные отклонения пазов должны соответствовать указанным в таблице:


Примечания:
1. Допускаются для ширины паза и втулки любые сочетания полей допусков, указанных в таблице.
2. Для термообработанных деталей допускаются предельные отклонения размера ширины паза вала Н11, если это не влияет на работоспособность соединения.
3. В ответственных шпоночных соединениях сопряжения дна паза с боковыми сторонами выполняются по радиусу, величина и предельные отклонения которого должны указываться на рабочем чертеже.
4. Допускается в обоснованных случаях (пустотелые и ступенчатые валы, передачи пониженных вращающих моментов и т.п.) применять меньшие размеры сечений стандартных шпонок на валах больших диаметров, за исключением выходных концов валов.

Полное описание данных шпонок можно найти в ГОСТ 23360-78 «Соединения шпоночные с призматическими шпонками. Размеры шпонок и сечений пазов. Допуски и посадки».

ГОСТ 10748-79 — «Соединения шпоночные с призматическими высокими шпонками. Размеры шпонок и сечений пазов. Допуски и посадки»
ГОСТ 8790-79 — «Соединения шпоночные с призматическими направляющими шпонками с креплением на валу. Размеры шпонок и сечений пазов. Допуски и посадки»
ГОСТ 12208-66 — «Приспособления станочные. Шпонки призматические скользящие сборные. Конструкция»
ГОСТ 24071-97 — «Сегментные шпонки и шпоночные пазы»

Шпон паз на валу

6.4.1. Общие сведения

Шпоночное соединение — одно из распространенных средств передачи крутящего момента от вала втулке. Эти соединения применяют в тех случаях, когда нет особых требований к точности центрирования соединяемых деталей. Шпоночные соединения могут обеспечивать как неподвижное, так и подвижное вдоль оси соединение.

По форме шпонки разделяются на призматические, клиновые, сегментные и тангенциальные. Чаще других используются призматические шпонки с закругленными торцами, так называемого исполнения 1 по ГОСТу 23360-78 (рис. 6.19, а).

На валу изготавливается паз длиной, равной длине шпонки (рис. 6.19, б). Для облегчения сборочных операций допускается изготавливать длину шпоночного паза на 0,5—1,0 мм больше длины шпонки. Шпоночные пазы не доводят до торца вала на расстояние L = 3. 5 мм при диаметре вала Db ≤ 30 мм и L = 5. 7 мм при Db > 30 мм. При наличии на ступенчатом валу нескольких шпоночных пазов их рекомендуется располагать в разных плоскостях.

Во втулке продалбливают (как правило, на всю длину втулки) шпоночную канавку (рис. 6.19, в).

Шпонка вставляется в паз на валу (рис. 6.19, г). Затем втулка надевается на вал таким образом, чтобы выступающая часть шпонки вошла в шпоночную канавку (рис. 6.19, д). Глубина канавки должна обеспечивать зазор К между поверхностью шпонки и канавкой (рис. 6.20).

Поперечные размеры шпонки b×h увязаны с размером диаметра Db вала. В справочных таблицах ГОСТа 23360-78 определены диапазоны диаметров (свыше Dmin до Dmax) вала, для которых установлены соответствующие сечения шпонок. Длина шпонок l также стандартизована. При работе с КОМПАС-библиотекой нет необходимости в разыскивании этой информации в справочной литературе — все данные для построения имеются в диалоговых окнах библиотеки.

При изображении шпонок на сборочных чертежах они показываются не рассеченными на продольных разрезах и рассеченными — на поперечных разрезах.

Рис. 6.19. Элементы шпоночного соединения:

а — призматическая шпонка с закругленными торцами;

б — шпоночный паз на валу; в — шпоночная канавка во втулке;

г — шпонка, вставленная в паз на валу;

д — шпоночное соединение в сборе (втулка показана с вырезом четверти)

На чертежах деталей с призматическими шпонками размеры шпоночного паза на валу проставляют обычно как на рис. 6.21, а, а шпоночной канавки во втулке — как на рис. 6.21, б.

При этом обязательными считаются следующие размеры:

длина Lp шпоночного паза;

ширина b шпоночного паза вала и втулки;

глубина пазов: на валу — размер t1 и во втулке — размер Db + t2;

диаметры Db вала и отверстия втулки.

Рис. 6.20. Параметры шпоночного соединения

Рис. 6.21. Простановка размеров на элементах шпоночного соединения: а — на валу; б — во втулке

Кроме того, допускается наносить в качестве справочного размера радиус закругления шпоночного паза, для облегчения выбора параметров фрезы. Радиус r сопряжения дна шпоночного паза с боковыми гранями указывают только для ответственных шпоночных соединений.

6.4.2. Пример 24. Моделирование шпоночного паза под призматическую шпонку

Выполните моделирование шпоночного паза под призматическую шпонку

в центральной части вала из предыдущего раздела (см. рис. 6.18).

1. Откройте файл с моделью вала.

2. Кнопкой Менеджер библиотек на Стандартной панели вызовите диалоговое окно КОМПАС-библиотек. Раскройте раздел Расчет и построение и в правой части окна дважды щелкните на пункте КОМПАС-SHAFT 3D (рис. 6.22).

Рис. 6.22. Подключение библиотеки КОМПАС-SHAFT 3D

3. Раскроется библиотека КОМПАС-SHAFT 3D (рис. 6.23). При помощи прокрутки найдите пункт Шпоночный паз под призматическую шпонку

и также двойным щелчком активизируйте его.

Рис. 6.23. Вызов команды Шпоночный паз под призматическую шпонку

4. В окне документа щелчком мыши укажите на цилиндрическую поверхность в центральной части вала, на которой должен быть построен шпоночный паз. Эта поверхность выделится аквамариновым цветом (рис. 6.24).

Рис. 6.24. Выделенная цилиндрическая поверхность для построения шпоночного паза

5. В диалоговом окне Сообщение библиотеки проследите, чтобы был установлен переключатель Внешняя, и нажмите кнопку OK (рис. 6.25).

Рис. 6.25. Диалоговое окно Сообщение библиотеки

6. После этого появится диалоговое окно Паз под призматическую шпонку по ГОСТ 23360-78 (рис. 6.26). Диаметр Db и длину Lb цилиндрической поверхности система определит автоматически. Эти данные будут отражены в таблице в нижней части окна. В этой же таблице помещается справочная информация: минимальный Dmin и максимальный Dmax диаметры вала стандартизованного диапазона, ширина b и глубина t1 шпоночного паза, радиус r сопряжения дна шпоночного паза с боковыми гранями (или фаска S1 ×45°).

7. В левой верхней части диалогового окна в поле списка Шпонка появится обозначение шпонки 18×11×50 (b×h×l в мм), предложенной системой. При этом сечение шпонки 18×11 автоматически выбрано в зависимости от

диапазона Dmin—Dmax, в который попал диаметр вала Db. Если необходимо выбрать другую длину шпонки l, раскройте список Шпонка и укажите нужный типоразмер (рис. 6.27). В нашем случае длина шпонки 50 мм является приемлемой.

Рис. 6.26. Диалоговое окно Паз под призматическую шпонку по ГОСТ 23360-78

Рис. 6.27. Раскрытый список Шпонка диалогового окна Паз под призматическую шпонку по ГОСТ 23360-78

8. Длина шпоночного паза Lp должна быть равна длине шпонки l. Поле Длина паза Lp, мм оставьте без изменений. В поле Расстояние L, мм установите расстояние L от базовой грани 5 мм, а в поле Угол Alfa, град. — угол поворота паза относительно вертикальной оси 180°. Нажмите кнопку Указать грань (на время диалоговое окно свернется). В окне документа укажите базовую грань, относительно которой будет построен шпоночный паз — эта грань выделится зеленым цветом (рис. 6.28).

9. Диалоговое окно снова возникнет на экране, и в поле указанных граней появится надпись Грань 1. Нажмите кнопку OK. Система построит шпоночный паз с заданными параметрами (рис. 6.29).

Как средство для передачи вращения шпонка используется повсеместно. На первый взгляд здесь нет ничего сложного: вырезал шпоночный паз, вставили, узел готов. Почему шпоночное соединение, несмотря на довольно устаревшую технологию, не потеряло своей актуальности?

Шпоночные соединения

Шпонка представляет собой некую деталь, являющуюся промежуточным звеном для передачи вращательного момента вала ступице. Данный процесс осуществляется за счет образования напряжения смятия шпоночных пазов. Именно по этой причине шпоночные соединения относят к группе жесткого способа передачи вращения.

В большинстве случаев шпонками пользуются в низко нагруженных изделиях. Преимущественно для деталей мелкой серии. Происходит это из-за малой несущей нагрузки шпонок, причина которой кроется в наличии следующих недостатков:

  • Шпоночные пазы уменьшают поперечную площадь вала, что отрицательно влияет на его прочностные характеристики. Особенно это имеет сильный эффект на пустотелых валах с отношением внутреннего и наружного радиусов 0,6. Изготовление шпоночных пазов в таких условиях является неприемлемым.
  • Форма паза отличается резкими переходами, что служит причиной образования концентраторов напряжения. Все это заметно снижает устойчивость соединения к циклическим нагрузкам.
  • Достаточно низкая технологичность.

Несмотря на все вышеуказанные недочеты шпонки все равно активно применяются в отраслях машиностроения из-за упрощенной конструкции и низкой стоимости. Но на массовом и крупносерийном производстве высоко ответственных деталей шпонки уступили более совершенным во всех планах шлицевым соединениям.

Виды шпонок

Современное производство предоставляет свыше 20 наименований разного рода.. Но среди них выделяют следующие наиболее применяемые типы в машиностроении:

  • Клиновые используются на концевых установках и являются разновидностью забивных шпонок. Такое шпоночное соединение применяют при диаметре вала от 100 мм. В настоящее время встречаются крайне редко. Причина этого кроется в высокой вероятности перетяжки узла и смещении соосности ступицы и вала под воздействием одностороннего усилия. А также затрудненное извлечение шпонок.
  • Призматические. Размеры паза регулируются ГОСТ 23360-78. Они наиболее востребованы в промышленности из-за оптимального соотношения прочности и технологичности. Существует две их разновидности: врезные и закладные. Врезные шпонки устанавливаются с натягом, а закладные с небольшим зазором.
  • Направляющие шпонки. От призматических их отличает наличие отверстий под крепеж на валу. Помимо передачи вращения они служат элементом для направления деталей.
  • Сегментные шпонки выделяются среди остальных повышенной технологичностью вырезания пазов. Пазы изготавливают с помощью дисковых фрез, что обеспечивает им большее значение точности и производительности. Крепеж шпонок на валах также отличается более высокой устойчивостью из-за более глубокого врезания в их поверхность. Однако одновременно все эти достоинства являются причиной существенного ослабления вала. Это обстоятельство наряду с небольшой длиной паза приводит к появлению повышенных напряжений, которые и ограничивают использование шпонок малонагруженными изделиями.

Стоит отметить, что шпоночные пазы изготавливаются методом фрезерования, долбления протяжки. Наиболее распространено их получение пальчиковой фрезой, поскольку этот способ обеспечивает относительно благоприятное распределение напряжение и приемлемую технологичность.

Материал

Для шпонок наиболее подходят стали с содержанием углерода свыше 0,4%. Именно такой состав обеспечивает необходимое значение износостойкости, прочности и твердости. Сюда относятся конструкционные стали марок 45 и 50, а также сталь обыкновенного качества Ст.6.

Применение более дорогих аналогов стальных сплавов не имеет смысла, поскольку повышенная жесткость шпонки увеличивает вероятности пазов валов и ступицы. Для улучшения условий передачи вращения куда выгодней воспользоваться другими более оптимальными.

Маркировка

Обозначение шпоночного крепления вала на ступице покажем на примерах. Шпонка призматическая с шириной 18 мм, высотой 11 мм и длиной 50 мм маркируется:

Шпонка 18х11х50 ГОСТ 8789-68

Стоит заметить, что посадочные размеры пазов отличаются. Их значения находятся в соответствующих стандартах шпоночных соединений.

Таблица 1. Размеры и предельные отклонения призматических шпонок и шпоночных пазов по ГОСТ 23360-78.

Шпо́нка (от польск. szponka , через нем. Spon, Span — щепка, клин, подкладка) — деталь машин и механизмов продолговатой формы, вставляемая в паз соединяемых деталей шпоночного соединения для передачи крутящего момента. По форме шпонки разделяются на клиновые, призматические, сегментные, тангенциальные и цилиндрические. Изготавливаются из различных сталей и сплавов.

Призматические шпонки имеют прямоугольное сечение, противоположные грани у них параллельны. Работают эти шпонки боковыми сторонами. Они изготавливаются в двух исполнениях: с закругленными и плоскими торцами. Соединение шпонки с валом неподвижное напряженное. В паз втулки (ступицы) шпонка входит с зазором.

Сегментные шпонки подобно призматическим работают боковыми гранями. При необходимости по длине вала могут устанавливаться две, а иногда и три шпонки. К преимуществам сегментных шпонок относятся простота изготовления как самих шпонок, так и пазов под них, к недостаткам- необходимость изготовления глубоких пазов в валах, что снижает прочность последних.

Стандарты для призматических шпонок — ГОСТ 23360, DIN 6885, ANSI B17.1; для сегментных шпонок — ГОСТ 24071, ISO 3912, DIN 6888.

Шпонка. Шпоночный паз. Виды, размеры и предельные отклонения.

Шпонка. Шпоночный паз. Виды, размеры и предельные отклонения.

Шпоночный материал предназначен для передачи крутящего момента с одной детали на другую. Препятствует вращению одной детали относительно другой. В зависимости от диаметра вала, на которые подгоняется шпонка, будет меняться её ширина и высота, а на валу – глубина шпоночного паза.
Шпоночные пазы на валу делают на фрезерном станке, а на другой детали, которая садится на вал (зубчатое колесо, втулка, полумуфта, муфта и т.д.) на долбежном станке (смотрите видео). Также возможно изготовление шпоночного паза на токарном станке (смотрите видео).

Существует несколько видов шпонок: призматические, клиновые, сегментные, цилиндрические и тангенциальные. Они могут быть как открытого, так и закрытого типа. Все они изготавливаются согласно стандартам ГОСТ, которые устанавливают размеры и предельные отклонение шпоночных пазов и шпонок:

ГОСТ 24071-97 – сегментные шпоночные пазы и шпонки;

ГОСТ 24068-80 – клиновые шпоночные пазы и шпонки;

ГОСТ 23360-78 – призматические шпоночные пазы и шпонки;

ГОСТ 10748-79 – призматические высокие шпоночные пазы и шпонки;

ГОСТ 24069-80 – тангенциальные нормальные шпоночные пазы и шпонки;

ГОСТ 12207-79 – цилиндрические шпоночные пазы и шпонки;

ГОСТ 8790-79 – призматические шпоночные пазы и шпонки с креплением на валу.

Материалом для шпонок могут служить различные сорта стали, чаще всего это углеродистые стали (Ст45, Ст60). Одним из главных условий, предъявляемых к шпонкам, является симметричность всех её боковых стенок, а также недопустима подгонка шпонки с заусеницами и забоинами.

Одним из главных плюсов шпонки является простота конструкции, надёжность и небольшая стоимость. Сборка такого рода соединения не занимает много времени.

Ниже вы можете ознакомится с таблицами размеров и предельных отклонение шпоночных пазов и шпонок.

Шпонка. Шпоночный паз. Виды, размеры и предельные отклонения.

Призматические шпонки по ГОСТ 23360-78.

Рис 1. Основные обозначения призматических шпонок и шпоночных пазов.

Таблица 1. Размеры и предельные отклонения призматических шпонок и шпоночных пазов по ГОСТ 23360-78.

Высота шпонок Предельное отклонение размеров
d + t1 d + t2
От 2 до 6 0
-0,1
+0,1
Св. 6 до 18 0
-0,2
+0,2
Св. 18 до 50 0
-0,3
+0,3

Призматические шпонки с креплением на валу по ГОСТ 8790-79.

Рис 2. Основные обозначения призматических шпонок с креплением на валу и шпоночных пазов.

Таблица 3. Размеры призматических шпонок с креплением на валу по ГОСТ 8790-79.

Ширина b (h9) Высота h (h11) Радиус закругления r или фаска s1 x 45° Диаметр d0 Длина l2 Длина l (h14) Винты по ГОСТ 1491-80
не менее не более от до
8 7 0 25 0,40 М3 7 25 90 М3×8
10 8 0,40 0,60 8 25 110 М3×10
12 М4 10 28 140 М4×10
14 9 М5 36 160 М5×12
16 10 М6 11 45 180 М6×14
18 11 50 200
20 12 0,60 0,80 56 220
22 14 М8 16 63 250 М8×20
25 70 280
28 16 80 320
32 18 М10 18 90 360 М10×25
36 20 1,00 1,20 100 400
40 22 М12 22 100 400 М12×30
45 25 125 450

Сегментные шпонки по ГОСТ 8786-68.

Рис 3. Основные обозначения сегментных шпонок и шпоночных пазов.

Таблица 4. Размеры и предельные отклонения сегментных шпонок и шпоночных пазов по ГОСТ 8786-68.

Клиновые шпонки по ГОСТ 24068-80.

Рис 4. Основные обозначения клиновых шпонок и шпоночных пазов.

Таблица 5.1 Размеры и предельные отклонения клиновых шпонок и шпоночных пазов по ГОСТ 24068-80.

Таблица 5.2 Размеры и предельные отклонения клиновых шпонок и шпоночных пазов по ГОСТ 24068-80.

УТОЧНЕННЫЙ РАСЧЕТ ВАЛОВ

5.1. Составление расчетной схемы ведущего вала.

Расчетная схема вала, составленная согласно эскизной компоновке, представлена на рисунке 5.1:

n1
M1
L
LA
LB
ZA
XA
YA
F2
Fa
F
ZB
XB
YB

Рисунок 5.1. Расчетная схема ведущего вала

Внешние активные нагрузки, действующие на вал:

— крутящий момент на ведущем валу Т1=______ Н м ;

— нагрузки на ведущий вал F=______ Н; Fа=_____ Н; Fr=_______ Н.

5.1.1. Определяем реакции опор А и В

ΣZ=0; F-Za-Zв=0 при симметричном приложении нагрузки имеем:

где F– окружная сила на ведущем валу

Yв = ,Н (5.2)

где Fr– радиальная сила на ведущем валу

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КП 151031 2012 001 ПЗ

Fа– осевая сила на ведущем валу

d1 — делительный диаметр вала- шестерни

La,Lв – расстояние между опорами

Ra = (5.4)

Rв = (5.5)

Учитывая значительное конструктивное увеличение диаметра ведущего вала, расчет его на выносливость не проводим, так как не следует ожидать больших запасов прочности во всех предполагаемых опасных сечениях.

5.2. Составление расчетной схемы ведомого вала.

Расчетная схема вала, составленная согласно эскизной компоновке, представлена на рисунке 5.2

F
XD
Yc
Zc
F2
Fa
YD
ZD
Xc
Lc
LD
LK
MZ =____Нм
MIIy=___Нм
M2=____Нм
Mz(Нм)
MI (Нм)
My (Нм)
M2

Рисунок 5.2. Расчетная схема ведомого вала. Эпюры изгибающих и крутящих моментов

Внешние активные нагрузки, действующие на вал:

— крутящий момент на ведомом валу Т2=_____ Н м ;

— нагрузки на вал F= _____Н; Fr =_____Н; Fа=______ Н.

5.2.1. Определение реакций опор

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КП 151031 2012 001 ПЗ

= 0;

F-Zc-ZD=0 при симметричном расположении колеса относительно опор имеем

Суммарные радиальные реакции от сил в прямозубом зацеплении

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КП 151031 2012 001 ПЗ

YD = Н (5.7)

Rс = (5.9)

RD = (5.10)

5.2.2. Построение эпюр МZ, Му, и Тх и определение суммарного изгибающего момента. Эпюры МZ, Му, и Тх представлены на рисунке 5.2.

а) Эпюра изгибающих моментов в плоскости ХОУ. Изгибающий момент в сечении П – П:

со стороны опоры С

МIIz=Yc·lс Н·м (5.11)

со стороны опоры Д

На эпюре Мzдля прямозубой передачи скачка не будет, т.к. отсутствует осевая сила Fа и момент от нее равен нулю.

б) Эпюра изгибающих моментов Му, в плоскости ХОZ.

Изгибающий момент в сечении П – П:

МIIy=Zc·lс Н· м (5.13)

в) Суммарный изгибающий момент в сечении П – П

МIIy = Н·м (5.14)

г) Эпюра крутящего момента Тх в плоскости УОZ на ведомый вал действует крутящий момент Т2____ = Н· м на участке от сечения П – П до выходного конца вала. T2=Tx=_____Н·м

5.3. Уточненный проверочный расчет ведомого вала на выносливость.

5.3.1. В сечении П-П изгибающие и крутящий моменты имеют максимальные значения при наличии постоянного крутящего момента. Это сечение является опасным. Значения изгибающего и крутящего моментов для опасного сечения сводим в таблицу 7.

Таблица 7. Значения изгибающего и крутящего моментов для опасного сечения.

Поперечное сечение Диаметр вала Концентраторы напряжений Изгибающий момент Н м Крутящий момент Н м
П-П dk2=__·10 -3 м шпонпаз; посадка с натягом МII =____ Т2 =_____
В месте перехода диаметров dk2 к dn2 dn2=___·10 -3 м Галтель 2,5 Определять по эпюрам Mz,Mу Т2 =_____

5.3.2. Выбираем материал ведомого вала

Сталь 45; σв=____ МПа; σТ=______ МПа; (см. таблицу 3)

Предел выносливости при симметричных циклах нагружений:

5.3.3. Расчет для сечения П-П

Моменты сопротивления с учетом ослабления сечения шпоночным пазом:

м3 (5.15)

Изм.
Лист
№ докум.
Подпись
Дата
Лист
КП 151031 2012 001 ПЗ

м3 (5.16)

где в, мм; t ,мм; – размеры шпонпаза в поперечном сечении вала(таблица 22)

2 — диаметр вала под колесом

Максимальное нормальное напряжение изгиба:

(5.17)

Амплитудное и среднее нормальные напряжения при симметричном цикле нагружения

Максимальные касательные напряжения кручения:

τк= Па = МПа (5.18)

Соответственно амплитудные и средние касательные напряжения при пульсирующем цикле кручения:

Эффективные коэффициенты концентрации напряжений при изгибеКσи при кручении Кτ при σв

Добавить комментарий